The Plasticity of Myeloma Plasma Cells as Expressed by Dedifferentiation into an Immature, Resilient, Apoptosis-Resistant Phenotype.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 633-633 ◽  
Author(s):  
Shmuel Yaccoby ◽  
Kenichiro Yata ◽  
Yun Ge ◽  
Bart Barlogie ◽  
Guido Tricot ◽  
...  

Abstract Progression of myeloma (MM) is considered to be a multistage and dynamic process of cell differentiation, survival, proliferation and dissemination. We have previously demonstrated the proliferative potential of purified CD45lowCD38high mature MM cells in SCID-hu mice (Yaccoby & Epstein, Blood, 1999), the ability of CD138-selected MM cells to produce myeloma in our novel SCID-rabbit model (Yata et al., ASH, 2003), and the interdependence of MM bone disease and tumor growth whereby MM cells induce osteoclast activity and are dependent on osteoclasts in vivo (Yaccoby et al., BJH, 2002) and ex vivo (Yaccoby et al., Cancer Res., 2004). The aim of this study was to determine the osteoclast-induced phenotypic changes associated with survival of MM cells in long term co-culture. CD138-selected (>95% purity) MM cells from 16 patients were co-cultured with human osteoclasts for up to 20 weeks. The pre-cultured baseline cells were typically CD45low/inermediateCD38high, CD19−CD34−. At the end of long term co-culture (>6 weeks) MM cells had BrdU labeling index (LI) of 2.5±2.0 and their viability was 97%±1%. The phenotype of co-cultured MM cells consistently shifted to a less mature phenotype, with CD45 expression increasing from CD45low to CD45intermmediata/high and reduced expression of CD38 from CD38high to subpopulations with CD38intermediate levels, as determined by flow cytometry and confirmed by qRT-PCR. Further flow analysis revealed that co cultured MM cells also expressed low levels of CD19 and CD34, and identified a small subpopulation of CD138lowCD45high MM cells. Morphologically, the co-cultured MM cells uniformly gained plasmablastic characteristics when compared to pre-cultured cells. Previous reports suggested that IL-6 was important for maintaining subpopulation of CD45-expressing MM cells. However, blocking IL-6 activity in co-cultures with anti-IL6 and anti-IL6R neutralizing antibodies (5 μg/ml, each) did not affect the immature phenotype of MM cells. Intriguingly, long term co-culture of normal CD34+ hematopoietic stem cells (HSCs) with osteoclasts results in loss of CD34 expression, suggesting a common mechanism for osteoclast-induced MM PC and HSC plasticity. To investigate if the observed phonotypic changes are associated with apoptosis resistance, we determined the effects of 3 days exposure to the pro-apoptotic agent dexamethasone (DEX, 10−7 M) on MM cells cultured alone or in co-cultures (n=5), at initiation (baseline) and after 6 weeks of co-cultures. The percent apoptotic cells was determined by trypan blue exclusion and annexin V flow cytometry. When baseline MM cells were cultured alone, DEX significantly increased the percent of apoptotic cells over that spontaneous rate (p<0.01). In contrast, when MM cells recovered from co-cultures after 6 weeks they survived and were resistant to DEX-induced apoptosis (16%±11% and 24%±21% apoptotic cells in the absence and presence of DEX, respectively). As reported, osteoclasts supported survival of MM cells at baseline and after 6 weeks of co-culture (p<0.01), and protected MM PCs from DEX-induced apoptosis. Our data demonstrate the phenotypic plasticity of primary myeloma cells, whereby mature MM cells are reprogrammed and acquire autonomous survival properties after co-culture with osteoclasts. We hypothesize that in vivo these cells are dormant, resistant to spontaneous and drug-induced apoptosis, and could be responsible for relapse.

Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 930-939 ◽  
Author(s):  
SJ Szilvassy ◽  
PM Lansdorp ◽  
RK Humphries ◽  
AC Eaves ◽  
CJ Eaves

Abstract A simple procedure is described for the quantitation and enrichment of murine hematopoietic cells with the capacity for long-term repopulation of lymphoid and myeloid tissues in lethally irradiated mice. To ensure detection of the most primitive marrow cells with this potential, we used a competitive assay in which female recipients were injected with male “test” cells and 1 to 2 x 10(5) “compromised” female marrow cells with normal short-term repopulating ability, but whose long-term repopulating ability had been reduced by serial transplantation. Primitive hematopoietic cells were purified by flow cytometry and sorting based on their forward and orthogonal light-scattering properties, and Thy-1 and H-2K antigen expression. Enrichment profiles for normal marrow, and marrow of mice injected with 5-fluorouracil (5- FU) four days previously, were established for each of these parameters using an in vitro assay for high proliferative potential, pluripotent colony-forming cells. When all four parameters were gated simultaneously, these clonogenic cells were enriched 100-fold. Both day 9 and day 12 CFU-S were copurified; however, the purity (23%) and enrichment (75-fold) of day 12 CFU-S in the sorted population was greater with 5-FU-treated cells. Five hundred of the sorted 5-FU marrow cells consistently repopulated recipient lymphoid and myeloid tissues (greater than 50% male, 1 to 3 months post-transplant) when co-injected with 1 to 2 x 10(5) compromised female marrow cells, and approximately 100 were sufficient to achieve the same result in 50% of recipients under the same conditions. This relatively simple purification and assay strategy should facilitate further analysis of the heterogeneity and regulation of stem cells that maintain hematopoiesis in vivo.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 441-449 ◽  
Author(s):  
A. Massé ◽  
L.H. Ramirez ◽  
G. Bindoula ◽  
C. Grillon ◽  
J. Wdzieczak-Bakala ◽  
...  

Abstract The tetrapeptide Acetyl-N-Ser-Asp-Lys-Pro (AcSDKP or Goralatide), a physiological regulator of hematopoiesis, inhibits the entry into the S-phase of murine and human hematopoietic stem cells. It has been shown to reduce the damage to specific compartments in the bone marrow resulting from treatment with chemotherapeutic agents, ionizing radiations, hyperthermy, or phototherapy. The present study was performed to assess the therapeutic potential of AcSDKP in vivo in reducing both the toxicity and the hematopoietic damage induced by fractionated administration of doxorubicin (DOX), a widely used anticancer drug. Here we showed that AcSDKP could reduce DOX-induced mortality in mice and could protect particularly the long-term reconstituting cells (LTRCs) in addition to colony forming units-spleen, high proliferative potential colony-forming cells, and colony-forming units–granulocyte-macrophage (CFU-GM) from DOX toxicity. The protection against DOX-induced mortality in mice was improved when AcSDKP was administered for 3 days, at a dose of 2.4 μg/d, by continuous subcutaneous (SC) infusion or fractionated SC injections starting 48 hours before DOX treatment. Moreover, the recovery of the CFU-GM population in the AcSDKP-DOX–treated mice was optimized by the subsequent administration of granulocyte colony-stimulating factor (G-CSF). The coadministration of AcSDKP with DOX may improve its therapeutic index by reducing both acute hematotoxicity on late stem cells and progenitors and long-term toxicity on LTRCs. Optimization of these treatments combined with G-CSF may provide an additional approach to facilitate hematopoietic recovery after cancer chemotherapy.


Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 930-939
Author(s):  
SJ Szilvassy ◽  
PM Lansdorp ◽  
RK Humphries ◽  
AC Eaves ◽  
CJ Eaves

A simple procedure is described for the quantitation and enrichment of murine hematopoietic cells with the capacity for long-term repopulation of lymphoid and myeloid tissues in lethally irradiated mice. To ensure detection of the most primitive marrow cells with this potential, we used a competitive assay in which female recipients were injected with male “test” cells and 1 to 2 x 10(5) “compromised” female marrow cells with normal short-term repopulating ability, but whose long-term repopulating ability had been reduced by serial transplantation. Primitive hematopoietic cells were purified by flow cytometry and sorting based on their forward and orthogonal light-scattering properties, and Thy-1 and H-2K antigen expression. Enrichment profiles for normal marrow, and marrow of mice injected with 5-fluorouracil (5- FU) four days previously, were established for each of these parameters using an in vitro assay for high proliferative potential, pluripotent colony-forming cells. When all four parameters were gated simultaneously, these clonogenic cells were enriched 100-fold. Both day 9 and day 12 CFU-S were copurified; however, the purity (23%) and enrichment (75-fold) of day 12 CFU-S in the sorted population was greater with 5-FU-treated cells. Five hundred of the sorted 5-FU marrow cells consistently repopulated recipient lymphoid and myeloid tissues (greater than 50% male, 1 to 3 months post-transplant) when co-injected with 1 to 2 x 10(5) compromised female marrow cells, and approximately 100 were sufficient to achieve the same result in 50% of recipients under the same conditions. This relatively simple purification and assay strategy should facilitate further analysis of the heterogeneity and regulation of stem cells that maintain hematopoiesis in vivo.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 441-449 ◽  
Author(s):  
A. Massé ◽  
L.H. Ramirez ◽  
G. Bindoula ◽  
C. Grillon ◽  
J. Wdzieczak-Bakala ◽  
...  

The tetrapeptide Acetyl-N-Ser-Asp-Lys-Pro (AcSDKP or Goralatide), a physiological regulator of hematopoiesis, inhibits the entry into the S-phase of murine and human hematopoietic stem cells. It has been shown to reduce the damage to specific compartments in the bone marrow resulting from treatment with chemotherapeutic agents, ionizing radiations, hyperthermy, or phototherapy. The present study was performed to assess the therapeutic potential of AcSDKP in vivo in reducing both the toxicity and the hematopoietic damage induced by fractionated administration of doxorubicin (DOX), a widely used anticancer drug. Here we showed that AcSDKP could reduce DOX-induced mortality in mice and could protect particularly the long-term reconstituting cells (LTRCs) in addition to colony forming units-spleen, high proliferative potential colony-forming cells, and colony-forming units–granulocyte-macrophage (CFU-GM) from DOX toxicity. The protection against DOX-induced mortality in mice was improved when AcSDKP was administered for 3 days, at a dose of 2.4 μg/d, by continuous subcutaneous (SC) infusion or fractionated SC injections starting 48 hours before DOX treatment. Moreover, the recovery of the CFU-GM population in the AcSDKP-DOX–treated mice was optimized by the subsequent administration of granulocyte colony-stimulating factor (G-CSF). The coadministration of AcSDKP with DOX may improve its therapeutic index by reducing both acute hematotoxicity on late stem cells and progenitors and long-term toxicity on LTRCs. Optimization of these treatments combined with G-CSF may provide an additional approach to facilitate hematopoietic recovery after cancer chemotherapy.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3541-3547 ◽  
Author(s):  
Cheryl D. Helgason ◽  
Jennifer Antonchuk ◽  
Caroline Bodner ◽  
R. Keith Humphries

AbstractSH2-containing inositol 5-phosphatase (SHIP) is an important negative regulator of cytokine and immune receptor signaling. SHIP-deficient mice have a number of hematopoietic perturbations, including enhanced cytokine responsiveness. Because cytokines play an important role in the maintenance/expansion of the primitive hematopoietic cell pool, we investigated the possibility that SHIP also regulates the properties of cells in these compartments. Primitive hematopoietic cells were evaluated in SHIP-deficient mice and wild-type littermate controls using the colony-forming unit-spleen (CFU-S) and competitive repopulating unit (CRU) assays for multipotent progenitors and long-term lympho-myeloid repopulating cells, respectively. Absence of SHIP was found to affect homeostasis of CFU-S and CRU compartments. Numbers of primitive cells were increased in extramedullary sites such as the spleen of SHIP-deficient mice, although total body numbers were not significantly changed. In vivo cell cycle status of the CRU compartment was further evaluated using 5-fluorouracil (5-FU). SHIP-deficient CRUs were more sensitive to 5-FU killing, indicating a higher proliferative cell fraction. More strikingly, SHIP was found to regulate the ability of primitive cells to regenerate in vivo, as CRU recovery was approximately 30-fold lower in mice that received transplants of SHIP-deficient cells compared with controls. These results support a major role for SHIP in modulating pathways important in homeostasis and regeneration of hematopoietic stem cells, and emphasize the importance of negative cytokine regulation at the earliest stages of hematopoiesis. (Blood. 2003;102:3541-3547)


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2094-2097 ◽  
Author(s):  
Dali Cai ◽  
Ying Wang ◽  
Oliver G. Ottmann ◽  
Peter J. Barth ◽  
Andreas Neubauer ◽  
...  

Leukemias are differentially sensitive to histone deacytelase inhibitor (HDI)–induced apoptosis, but molecular reasons for this remain unclear. We here show that BCR/ABL-, but not FMS-like tyrosine kinase 3 (FLT3)–internal tandem duplication (ITD)–transformed 32D cells or primary acute myeloid leukemia (AML) blasts undergo apoptosis after treatment with the HDI valproic acid (VPA) plus all-trans retinoic acid (VPA/ATRA). A particular VPA/ATRA responsiveness of Philadelphia chromosome–positive (Ph+) acute lymphatic leukemia (ALL) was confirmed in a therapy-refractory patient in vivo. HDI-stimulated apoptosis in Ph+ cells was caspase dependent, but independent from Akt pathway inhibition. Conversely, separate blockage of the Akt/mTor-signaling pathway was a prerequisite for overcoming apoptosis resistance to VPA/ATRA in FLT3-ITD cells, and primary AML blasts (n = 9). In conclusion, constitutive Akt activation causes apoptosis resistance to VPA/ATRA in AML, but not in Ph+ leukemia. This warrants the application of HDI-based therapies in poor-risk Ph+ ALL, and the use of Akt/mTor inhibitors to overcome HDI resistance in AML.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Laura S. Haneline ◽  
Troy A. Gobbett ◽  
Rema Ramani ◽  
Madeleine Carreau ◽  
Manuel Buchwald ◽  
...  

Fanconi anemia (FA) is a complex genetic disorder characterized by progressive bone marrow (BM) aplasia, chromosomal instability, and acquisition of malignancies, particularly myeloid leukemia. We used a murine model containing a disruption of the murine homologue ofFANCC (FancC) to evaluate short- and long-term multilineage repopulating ability of FancC −/− cells in vivo. Competitive repopulation assays were conducted where “test”FancC −/− or FancC +/+ BM cells (expressing CD45.2) were cotransplanted with congenic competitor cells (expressing CD45.1) into irradiated mice. In two independent experiments, we determined that FancC −/− BM cells have a profound decrease in short-term, as well as long-term, multilineage repopulating ability. To determine quantitatively the relative production of progeny cells by each test cell population, we calculated test cell contribution to chimerism as compared with 1 × 105 competitor cells. We determined that FancC −/− cells have a 7-fold to 12-fold decrease in repopulating ability compared with FancC +/+cells. These data indicate that loss of FancC function results in reduced in vivo repopulating ability of pluripotential hematopoietic stem cells, which may play a role in the development of the BM failure in FA patients. This model system provides a powerful tool for evaluation of experimental therapeutics on hematopoietic stem cell function.


Sign in / Sign up

Export Citation Format

Share Document