The Oncogenic Role of Tumor Suppressor Protein p27 in Ph+ Chronic Myeloid Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3276-3276 ◽  
Author(s):  
Anupriya Agarwal ◽  
Ryan Mackenzie ◽  
Dorian LaTocha ◽  
Kavin Vasudevan ◽  
Eduardo Firpo ◽  
...  

Abstract Abstract 3276 Poster Board III-1 Background: Several studies have indicated that BCR-ABL causes cell cycle defects by interfering with the cell cycle regulatory functions of p27, a Cyclin dependent kinase (Cdk) inhibitor and tumor suppressor. Studies in BCR-ABL positive cell lines have shown that BCR-ABL promotes proteasomal degradation of p27 in a pathway that involves the SCFSKP2 ubiquitin ligase, while cytoplasmic mislocalization has been described in primary CML cells. It has been suggested that the principal effect of this cytoplasmic mislocalization is to remove p27 from the nucleus, thereby relieving Cdks from p27 inhibition. However, recent studies have shown that a p27 mutant (p27CK-), that cannot bind to Cdks or Cyclins, actively contributes to oncogenesis. This raises the question as to whether cytoplasmic mislocalization of p27 in CML cells may in fact promote leukemogenesis rather than merely compromise Cdk inhibition. We therefore hypothesized that the net contribution of p27 in CML is to promote leukemogenesis due to the oncogenic activity of cytoplasmic p27. Experimental approach and results: We determined p27 localization in BCR-ABL positive cell lines and CD34+ progenitor cells from newly diagnosed chronic phase CML patients (N=7) and from CML patients in blast crisis (N=2) by immunoblotting of nuclear and cytoplasmic cellular fractions. We found that p27 is predominantly cytoplasmic in most CML cell lines and in CD34+ cells from 8/9 (89%) patient samples, including patients in blastic phase. Cytoplasmic localization of p27 in CD34+ cells from CML patients was also confirmed by immunofluorescence analysis. Further, we observed that inhibition of BCR-ABL kinase by imatinib, an Abl kinase inhibitor increased nuclear p27 in all cell lines tested and in 4/9 patient samples (3/7 chronic phase and 1/2 blastic phase samples). However, we did not observe a substantial change in the cytoplasmic p27 levels. Similar results were obtained in Ba/F3 and 32D murine hematopoietic cell lines expressing BCR-ABL when compared with the respective parental cells. Further, SKP2 was up-regulated in CD34+ cell from CML patients as compared to the normal patients consistent withSKP2 mediated down-regulation of nuclear p27. These data suggest that nuclear but not cytoplasmic p27 levels are predominantly regulated by BCR-ABL kinase activity. To test whether p27 is crucial for BCR-ABL-driven leukemia, we compared leukemogenesis between recipients of BCR-ABL transduced p27+/+ and p27-/- bone marrow. Mice transplanted with BCR-ABL infected p27-/- marrow had significantly longer median survival (70 days, range 48-150 days) compared to recipients of p27+/+ marrow (37 days, range 14-56 days) (p=0.0123). To exclude that this difference was related to the differences in homing and engraftment capabilities of p27+/+ and p27-/- bone marrow cells, we compared short term homing and long term engraftment of p27+/+ and p27-/- bone marrow cells transplanted into wild-type recipients and found no differences. These data suggest that the net contribution of p27 to BCR-ABL-mediated leukemogenesis is positive. Further, to investigate the contribution of nuclear p27 to leukemogenesis, we utilized marrow from p27S10A mice in the murine CML model. In p27S10A mice, p27 is nuclear to to abrogation of the phosphorylation site implicated in nuclear export. We injected BCR-ABL transduced bone marrow cells of p27S10A and p27+/+ mice into wild-type recipients and compared the disease progression. We observed that mice transplanted with BCR-ABL infected p27S10A marrow had significantly longer median survival (28 days, range 23-79 days) compared to the recipients of p27+/+ marrow (23 days, range 21-38 days) (p=0.0139). This data is consistent with nuclear tumor suppressor function of p27. Combined with the data above, this suggests that cytoplasmic p27 promotes BCR-ABL mediated leukemogenesis. Conclusions: Our data suggest that though nuclear p27 functions as a tumor suppressor, the net contribution of p27 in CML might be oncogenic due to an oncogenic role of the increased cytoplasmic p27. Restoring nuclear p27 or reducing cytoplasmic p27 may be therapeutically useful in malignancies with low nuclear and high cytoplasmic p27 expression. Disclosures: Druker: OHSU patent #843 - Mutate ABL Kinase Domains: Patents & Royalties; MolecularMD: Equity Ownership; Roche: Consultancy; Cylene Pharmaceuticals: Consultancy; Calistoga Pharmaceuticals: Consultancy; Avalon Pharmaceuticals: Consultancy; Ambit Biosciences: Consultancy; Millipore via Dana-Farber Cancer Institute: Patents & Royalties; Novartis, ARIAD, Bristol-Myers Squibb: Research Funding. Deininger:Genzyme: Research Funding; BMS: Consultancy; Novartis: Consultancy, Honoraria; Ariad : Research Funding.

Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 1977-1986 ◽  
Author(s):  
Peter A. McSweeney ◽  
Katherine A. Rouleau ◽  
Philip M. Wallace ◽  
Benedetto Bruno ◽  
Robert G. Andrews ◽  
...  

Abstract Using a polyclonal antiserum against canine CD34, we previously found that CD34 is expressed on canine bone marrow progenitor cells in a manner analogous to that found in humans. To further characterize CD34+ cells and to facilitate preclinical canine stem cell transplant studies, monoclonal antibodies (MoAbs) were raised to CD34. A panel of 10 MoAbs was generated that reacted with recombinant CD34 and with CD34+ cell lines and failed to react with CD34− cell lines. Binding properties of five purified MoAbs were determined by BIAcore analysis and flow cytometric staining, and several MoAbs showed high affinity for CD34. Two antibodies, 1H6 and 2E9, were further characterized, and in flow cytometry studies typically 1% to 3% of stained bone marrow cells were CD34+. Purified CD34+ bone marrow cells were 1.8- to 55-fold enriched for colony-forming unit–granulocyte-macrophage and for long-term culture initiating cells as compared with bone marrow mononuclear cells, whereas CD34− cells were depleted of progenitors. Three autologous transplants were performed with CD34+ cell fractions enriched by immunomagnetic separation. After marrow ablative total body irradiation (920 cGy), prompt hematopoietic recovery was seen with transplanted cell doses of ≤1.1 × 107 /kg that were 29% to 70% CD34+. Engraftment kinetics were similar to those of dogs previously transplanted with approximately 10- to 100-fold more unmodified autologous marrow cells. This suggests that CD34+ is a marker not only of canine bone marrow progenitors but also for cells with radioprotective or marrow repopulating function in vivo. MoAbs to CD34 will be valuable for future studies of canine hematopoiesis and preclinical studies concerning stem cell transplantation, gene therapy, and ex vivo progenitor cell expansion.


Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 1977-1986 ◽  
Author(s):  
Peter A. McSweeney ◽  
Katherine A. Rouleau ◽  
Philip M. Wallace ◽  
Benedetto Bruno ◽  
Robert G. Andrews ◽  
...  

Using a polyclonal antiserum against canine CD34, we previously found that CD34 is expressed on canine bone marrow progenitor cells in a manner analogous to that found in humans. To further characterize CD34+ cells and to facilitate preclinical canine stem cell transplant studies, monoclonal antibodies (MoAbs) were raised to CD34. A panel of 10 MoAbs was generated that reacted with recombinant CD34 and with CD34+ cell lines and failed to react with CD34− cell lines. Binding properties of five purified MoAbs were determined by BIAcore analysis and flow cytometric staining, and several MoAbs showed high affinity for CD34. Two antibodies, 1H6 and 2E9, were further characterized, and in flow cytometry studies typically 1% to 3% of stained bone marrow cells were CD34+. Purified CD34+ bone marrow cells were 1.8- to 55-fold enriched for colony-forming unit–granulocyte-macrophage and for long-term culture initiating cells as compared with bone marrow mononuclear cells, whereas CD34− cells were depleted of progenitors. Three autologous transplants were performed with CD34+ cell fractions enriched by immunomagnetic separation. After marrow ablative total body irradiation (920 cGy), prompt hematopoietic recovery was seen with transplanted cell doses of ≤1.1 × 107 /kg that were 29% to 70% CD34+. Engraftment kinetics were similar to those of dogs previously transplanted with approximately 10- to 100-fold more unmodified autologous marrow cells. This suggests that CD34+ is a marker not only of canine bone marrow progenitors but also for cells with radioprotective or marrow repopulating function in vivo. MoAbs to CD34 will be valuable for future studies of canine hematopoiesis and preclinical studies concerning stem cell transplantation, gene therapy, and ex vivo progenitor cell expansion.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1865-1865
Author(s):  
Stefan Heinrichs ◽  
Lily Conover ◽  
Carlos E. Bueso-Ramos ◽  
Outi Kilpivaara ◽  
Ross Levine ◽  
...  

Abstract Abstract 1865 Cytogenetic changes, mainly deletions, can be found in about 30–50% of patients with Myelodysplastic Syndromes (MDS). To identify a tumor suppressor candidate within a commonly deleted region on chromosome 20q, we performed gene expression analysis on CD34+ bone marrow cells obtained from 8 patients with a 20q aberration and 18 with a normal karyotype. However, we were unable to identify genes that were significantly differentially expressed in aberrant 20q karyotype as compared to normal karyotype MDS patients. In contrast, a comparison of CD34+ cells from all MDS cases analyzed (n=26) with CD34+ cells obtained from normal bone marrow (n=4) revealed 108 genes that were differentially expressed. Interestingly, one of the top-scoring genes was MYBL2, which is located on chromosome 20q. MYBL2 levels were downregulated more than two-fold in 18 out of 26 cases. RNAi-mediated knockdown of MYBL2 in CD34+ normal bone marrow cells revealed a signature of genes functionally associated with the G2/M cell cycle phase confirming the well-documented role of MYBL2 as key transcription factor governing the onset of cell division. We hypothesize that in a subset of MDS cases the control of cell division may be impaired by low levels of MYBL2 such that altered cell fates established during cell division in early hematopoietic stem and progenitor cells will lead to clonal expansion with imbalanced or impaired differentiation. Indeed, gene set enrichment analysis revealed a strong enrichment of MYBL2 signature genes in MDS CD34+ cells. In support of a potential role as tumor suppressor, resequencing of MYBL2 (144 patients) identified 2 somatic mutations, pinpointing an additional mechanism to reduce expression of normal levels of wild-type MYBL2. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1990-1990
Author(s):  
Stephane Flamant ◽  
Martine Guillier ◽  
Marie-Laure Bonnet ◽  
Jean-Pierre Lecouedic ◽  
William Vainchenker ◽  
...  

Abstract Imatinib mesylate (IM) is a tyrosine kinase inhibitor which is highly efficient in chronic myelogenous leukemia (CML), especially in the firts chronic phase of the disease. Recent data showed, however, that resistance to IM can develop in patients in more aggressive phases of their disease, which mainly occurs through mutations within the ABL kinase domain that interfere with IM binding, leading to IM-resistant relapses. The mechanisms of the occurrence of ABL kinase domain mutations in patients on IM therapy are not well understood, and in some of them, a mutation pre-existing to the introduction of IM was described, suggesting the possibility of a clonal selection under IM therapy. To determine if ABL kinase domain mutations could be induced de novo in primary marrow cells, we used an ecotropic BCR-ABL retrovirus (MIGR-p210 vector, 5.105 viral particles / ml) and infected 5-FU-treated bone marrow cells from C57BL/6 mice. Retrovirally transduced cells (30% GFP+) were transplanted in lethally irradiated animals in which they induced lethal leukemia in 3 weeks. Both BCR-ABL-transduced and control C57BL/6 bone marrow cells were seeded in liquid cultures (104 cells/well) in the presence of 0.25 μM IM with weekly half medium changes during which the concentration of IM was increased gradually from 0.25 to 2 μM over 2 months. In these conditions, no growth could be obtained from normal bone marrow cells (0/192 wells) whereas in 10/192 wells containing BCR-ABL-transduced cells, we observed significant growth on IM. These cells were then amplified in the presence of murine stromal MS-5 cells and 2 μM IM for over 6 months and 2 clones (C3 and C10) exhibiting persistent growth were further characterized. At cytological analysis both cell lines had a typical mast cell morphology. Flow cytomery analyses demonsrated the presence of CD41 marker on both cell lines, with absence of myeloid (Gr1), erythroid (Ter119) and B-cell (B220) markers. Cells were not polyploid and interestingly, they exhibited higher growth rates in the presence of IM, with reduced growth upon IM deprivation. Both cell lines had evidence of BCR-ABL vector integration by PCR analysis and were highly GFP+. To explore the mechanisms of IM-resistance in these cells, we extracted high molecular weight genomic DNA and amplified a BCR-ABL fragment of 1236 bp encompassing the ABL kinase domain of the integrated construct. We then sequenced the ABL kinase domain using internal primers in both 5′-3′ directions. Plasmid DNA from the original MIGR-p210 BCR-ABL vector served as control. In both clones (C3 and C10) ABL kinase point mutations were readily detectable which were not found in the BCR-ABL retroviral vector. C3 carried two mutations interesting the C helix (E300K) and the SH2 contact region (E371K) of ABL kinase domain, whereas C10 carried a single mutation in the C helix (D295N). These mutations were previously detected in a random in vitro mutagenesis assay of BCR-ABL in bacterial systems. Thus, our model is the first demonstration of the occurrence of ABL kinase domain mutations and the concomittant generation of an IM-resistant phenotype in primary marrow stem cells transduced with BCR-ABL vector DNA and selected in the presence of IM. The mechanisms of the occurrence of these mutations in vitro are currently under study but these results suggest that de novo ABL kinase mutations could also occur in vivo in CML patients treated with IM.


1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 270-274 ◽  
Author(s):  
S Misawa ◽  
E Lee ◽  
CA Schiffer ◽  
Z Liu ◽  
JR Testa

Abstract Cytogenetic studies were performed on nine patients with acute promyelocytic leukemia. Every patient had an identical translocation (15;17) or, in one case, a variant three-way rearrangement between chromosomes 7, 15, and 17. Another patient with chronic myelogenous leukemia was examined at the time of blastic crisis when the patient's bone marrow was infiltrated by hypergranular promyelocytes and blasts. Bone marrow cells contained a t(15;17) as well as a Ph1 chromosome. Only the latter abnormality was observed in the chronic phase of the disease. The translocation (15;17) was detected in all ten patients when bone marrow or peripheral blood cells were cultured for 24 hours prior to making chromosome preparations. However, the t(15;17) was not seen in three of these same cases when bone marrow cells were processed directly. These findings indicate that the t(15;17) is closely associated with acute proliferation of leukemic promyelocytes and that detection of this karyotypic defect may be influenced by the particular cytogenetic processing method used in different laboratories. An analysis of the banding pattern in the variant translocation provided additional evidence favoring chromosomal breakpoints at or very near the junction between bands 17q12 and 17q21 and at 15q22.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2706-2716 ◽  
Author(s):  
Nobuko Uchida ◽  
Zhi Yang ◽  
Jesse Combs ◽  
Olivier Pourquié ◽  
Megan Nguyen ◽  
...  

Abstract The adhesion molecule BEN/SC1/DM-GRASP (BEN) is a marker in the developing chicken nervous system that is also expressed on the surface of embryonic and adult hematopoietic cells such as immature thymocytes, myeloid progenitors, and erythroid progenitors. F84.1 and KG-CAM, two monoclonal antibodies to rat neuronal glycoproteins with similarity to BEN, cross-react with an antigen on rat hematopoietic progenitors, but F84.1 only also recognizes human blood cell progenitors. We have defined the antigen recognized by F84.1 as the hematopoietic cell antigen (HCA). HCA expression was detected on 40% to 70% of CD34+ fetal and adult bone marrow cells and mobilized peripheral blood cells. Precursor cell activity for long-term in vitro bone marrow cell culture was confined to the subset of CD34+ cells that coexpress HCA. HCA is expressed by the most primitive subsets of CD34+ cells, including all rhodamine 123lo, Thy-1+, and CD38−/lo CD34+ adult bone marrow cells. HCA was also detected on myeloid progenitors but not on early B-cell progenitors. We also describe here the cloning and characterization of cDNAs encoding two variants of the human HCA antigen (huHCA-1 and huHCA-2) and of a cDNA clone encoding rat HCA (raHCA). The deduced amino acid sequences of huHCA and raHCA are homologous to that of chicken BEN. Recombinant proteins produced from either human or rat HCA cDNAs were recognized by F84.1, whereas rat HCA but not human HCA was recognized by antirat KG-CAM. Expression of either form of huHCA in CHO cells conferred homophilic adhesion that could be competed with soluble recombinant huHCA-Fc. The molecular cloning of HCA and the availability of recombinant HCA should permit further evaluation of its role in human and rodent hematopoiesis.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1165-1172 ◽  
Author(s):  
Russell S. Taichman ◽  
Marcelle J. Reilly ◽  
Rama S. Verma ◽  
Stephen G. Emerson

Abstract Based on anatomic and developmental findings characterizing hematopoietic cells in close approximation with endosteal cells, we have begun an analysis of osteoblast/hematopoietic cell interactions. We explore here the functional interdependence between these two cell types from the standpoint of de novo cytokine secretion. We determined that, over a 96-hour period, CD34+ bone marrow cells had no significant effect on osteoblast secretion of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, or transforming growth factor-β1 , but in some experiments minor increases in leukemia inhibitory factor levels were observed. However, when CD34+ bone marrow cells were cocultured in direct contact with osteoblasts, a 222% ± 55% (range, 153% to 288%) augmentation in interleukin-6 (IL-6) synthesis was observed. The accumulation of IL-6 protein was most rapid during the initial 24-hour period, accounting for nearly 55% of the total IL-6 produced by osteoblasts in the absence of blood cells and 77% of the total in the presence of the CD34+ cells. Cell-to-cell contact does not appear to be required for this activity, as determined by coculturing the two cell types separated by porous micromembranes. The identity of the soluble activity produced by the CD34+ cells remains unknown, but is not likely due to IL-1β or tumor necrosis factor-α, as determined with neutralizing antibodies. To our knowledge, these data represent the first demonstration that early hematopoietic cells induce the production of molecules required for the function of normal bone marrow microenvironments, in this case through the induction of hematopoietic cytokine (IL-6) secretion by osteoblasts.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 581-585 ◽  
Author(s):  
Vishwanath Bhattacharya ◽  
Peter A. McSweeney ◽  
Qun Shi ◽  
Benedetto Bruno ◽  
Atsushi Ishida ◽  
...  

The authors have shown accelerated endothelialization on polyethylene terephthalate (PET) grafts preclotted with autologous bone marrow. Bone marrow cells have a subset of early progenitor cells that express the CD34 antigen on their surfaces. A recent in vitro study has shown that CD34+ cells can differentiate into endothelial cells. The current study was designed to determine whether CD34+ progenitor cells would enhance vascular graft healing in a canine model. The authors used composite grafts implanted in the dog's descending thoracic aorta (DTA) for 4 weeks. The 8-mm × 12-cm composite grafts had a 4-cm PET graft in the center and 4-cm standard ePTFE grafts at each end. The entire composite was coated with silicone rubber to make it impervious; thus, the PET segment was shielded from perigraft and pannus ingrowth. There were 5 study grafts and 5 control grafts. On the day before surgery, 120 mL bone marrow was aspirated, and CD34+ cells were enriched using an immunomagnetic bead technique, yielding an average of 11.4 ± 5.3 × 106. During surgery, these cells were mixed with venous blood and seeded onto the PET segment of composite study grafts; the control grafts were treated with venous blood only. Hematoxylin and eosin, immunocytochemical, and AgNO3staining demonstrated significant increases of surface endothelialization on the seeded grafts (92% ± 3.4% vs 26.6% ± 7.6%; P = .0001) with markedly increased microvessels in the neointima, graft wall, and external area compared with controls. In dogs, CD34+ cell seeding enhances vascular graft endothelialization; this suggests practical therapeutic applications.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2328-2335 ◽  
Author(s):  
Zhong Chao Han ◽  
Min Lu ◽  
Junmin Li ◽  
Mai Defard ◽  
Bernadette Boval ◽  
...  

Abstract The effects of platelet factor 4 (PF4) on the viability and chemosensitivity of normal hematopoietic cells and cancer cell lines were studied to determine the mechanisms whereby PF4 functions as either an inhibitor or a protector and to evaluate its clinical significance. Two other chemokines, interleukin-8 (IL-8) and neutrophil-activating peptide-2 (NAP-2), were also studied in comparison to PF4. Using a tetrazolium salt assay for cell viability, we observed that PF4 at 1 to 50 μg/mL supported the viability of normal human bone marrow cells. Approximately 45% of cells cultured for 48 hours survived, whereas 80% or more survived in the presence of PF4 5 μg/mL. PF4 also supported the viability of CD34+ cord blood (CB) cells and protected them from apoptosis induced by transforming growth factor β1 (TGFβ1) and cytotoxic drugs. Pretreatment of CD34+ cells by PF4, but not by TGFβ1, caused an increase in the number of megakaryocyte colonies after these cells were replated in secondary cultures. Flow cytometry analysis showed that when CD34+ cells were preincubated with PF4 or TGFβ1 for 12 days in hematopoietic growth factor–rich medium, an increased number of remaining CD34+ cells was observed only for PF4-treated cells. Furthermore, PF4 significantly reduced the chemosensitivity of bone marrow cells, as shown by its ability to increase the 50% inhibition concentration (IC50) of several cytotoxic agents. Like PF4, IL-8 and NAP-2 at 0.1, 0.6, and 1 μg/mL supported the survival of myeloid progenitors, including colony-forming units granulocyte, erythroblast, monocyte, megakaryocyte (CFU-GEMM), CFU-megakaryocyte (CFU-MK), CFU–granulocyte/macrophage (CFU-GM), and burst-forming units–erythroblast (BFU-E), and reduced their sensitivity to the toxicity of etoposide (ETP). Protamine sulfate at 1 to 100 μg/mL showed no such activity of PF4. Interestingly, the three chemokines failed to affect significantly the viability and chemosensitivity of three leukemic and two other tumor cell lines. Based on these results, we conclude for the first time that PF4 and IL-8 and NAP-2 support the survival of normal hematopoietic precursors and protect them from the toxicity of chemotherapeutic agents. Because such activities are unique to normal hematopoietic cells but not to the cancer cell lines evaluated, a potential clinical application of these molecules in the treatment of cancer is suggested.


Sign in / Sign up

Export Citation Format

Share Document