Characterization of the Putative Stem Cells From Umbilical Cord Blood.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4231-4231
Author(s):  
Amos S. Gaikwad ◽  
Michael Cubbage ◽  
Tatiana Goltsova ◽  
Christopher Threeton ◽  
Maria Ty ◽  
...  

Abstract Abstract 4231 Cord blood (CB) is a rich source of hematopoietic stem cells (HSC) with long-term repopulating activity necessary for allogeneic stem cell transplantation. CD34+ stem cells are considered sufficient for transplantation, however recent progress in stem cell biology indicates that cells with other surface markers such as CD133 or cells expressing high aldehyde dehydrogenase activity with low side scatter (ALDHhigh/SSClow) or a rare side population (SP) of cells that exclude the Hoechst 33342 vital dye via multi drug transporters have been shown to possess stem cell properties. We characterized CD34+, CD133+, ALDH+ and SP in mononuclear cells (MNC) isolated from human CB. While the SP cell population is rare and detectable in few CB-MNC examined, we found abundant CD34+ and CD133+ cells (1.0+/-0.5 and 0.8+/-0.4 per 100 CD45+ MNC cells, respectively) following the ISHAGE protocol. A distinct ALDH+ cell population (median of 0.26%; range of 0.1 to 0.5%) was also present in all of the CB-MNC analyzed. Over 90% of the ALDH+ cells were also CD34+ and CD133+. The ability of CB-MNC to form colonies in methocult semi-solid media supplemented with cytokines yielded myeloid, lymphoid and erythroid colonies. The clonogenic potential of CB-MNC ranged from 16-48%. We are assessing the colony forming ability of purified stem cell fractions using flow cytometry. The clonogenic efficiency of these individual putative stem cells will be discussed. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3980-3980 ◽  
Author(s):  
Claudia Oancea ◽  
Brigitte Rüster ◽  
Jessica Roos ◽  
Afsar Ali Mian ◽  
Tatjana Micheilis ◽  
...  

Abstract Abstract 3980 Poster Board III-916 Stem cells have been shown to play an important role in the pathogenesis and maintenance of a significant number of malignancies, including leukemias. Similar to normal hematopoiesis the AML cell population is thought to be hierarchically organized. According to this model, only a few stem cells (LSC) are able to initiate and maintain the disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARα fusion protein. Treatment of APL with all-trans retinoic acid (t-RA) as monotherapy induces CR, but not molecular remission (CMR), followed by relapse within a few months. In contrast arsenic as monotherapy induces high rates of CR and CMR followed by a long relapse-free survival. We recently have shown that in contrast to t-RA, arsenic efficiently targets PML/RAR-positive stem cells, whereas t-RA increases their proliferation. For a better characterization of LSC in APL which has to be targeted for an efficient eradication of the disease we wanted to characterize the leukemia-initiating cell and the cell population able to maintain the disease in vivo. The model was based on a classical transduction/transplantation system of murine Sca1+/lin- HSC combined with a novel approach for the enrichment of transformed cells with long-term stem cell properties. We found that PML/RAR induced leukemia from the Sca1+/lin- HSC with a frequency of 40% and a long latency of 8-12 months independently of its capacity to increase dramatically replating efficiency and CFU-S12 potential as expression of the differentiation block and proliferation potential of derived committed progenitors. Based on the hypothesis that PML/RAR exerts its leukemogenic effects on only a small proportion of the Sca1+1/lin- population, we proceeded to select and to amplify rare PML/RAR-positive cells with the leukemia-initiating potential, by a negative selection of cell populations with proliferation potential without long term stem cell-capacity (LT). Therefore we expressed PML/RAR in Sca1+/lin- cells and enriched this population for LT- (lin-/Sca1+/c-Kit+/Flk2-) and ST-HSC (lin-/Sca1+/c-Kit+/Flk2+). After a passage first in semi-solid medium for 7 days and subsequent transplantation into lethally irradiated mice, cells from the ensuing CFU-S day12 were again transplanted into sublethally recipient mice. After 12 to 36 weeks, 6/6 mice developed acute myeloid leukemia without signs of differentiation in the group transplanted with the lin-/Sca1+/c-Kit+/Flk2- population but not from that transplanted with lin-/Sca1+/c-Kit+/Flk2+ cells. This leukemia was efficiently transplanted into secondary recipients. The primary leukemic cell population gave origin to 6 clearly distinct subpopulations defined by surface marker pattern as an expression of populations with distinct differentiation status, able - after sorting - to give leukemia in sublethally irradiated recipients: Sca1+/c-Kit+/CD34- (LT-HSC), Sca1+/c-Kit+/CD34+ (ST-HSC), Sca1-/c-Kit+, B220lo/GR1+/Mac1+, B220hi/GR1+/Mac1+, B220-/Gr1-/Mac1-. Interestingly, all leukemias from the different population presented an identical phenotype. These findings strongly suggest that there is a difference between a leukemia-initiating (L-IC) and leukemia-maintaining (L-MC) cell population in the murine PML/RAR leukemia model. In contrast to the L-IC, represented by a very rare subpopulation of primitive HSC, recalling a hierarchical stem cell model, the L-MC is represented by a larger cell population with a certain grade of phenotypical heterogeneity, but a high grade of functional homogeneity recalling a stochastic cancer induction model. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4755-4755
Author(s):  
John Astle ◽  
Yangfei Xiang ◽  
Anthony Rongvaux ◽  
Carla Weibel ◽  
Henchey Elizabeth ◽  
...  

Abstract De novo generation of HSCs has been described as a "holy grail" of stem cell biology, however the factors required for converting human pluripotent stem cells (PSCs) to true hematopoietic stem cells (HSCs) capable of robust long-term engraftment have yet to be fully characterized. Two groups have shown that injection of PSCs into immunodeficient mice leads to teratomas containing niches producing hematopoietic progenitors capable of long-term engraftment. Once these hematopoietic progenitors and their microenvironments are better characterized, this system could be used as a model to help direct in vitro differentiation of PSCs to HSCs. Toward this end, we have injected human PSCs into immunodeficient mice expressing human rather than mouse M-CSF, IL-3, GM-CSF, and thrombopoietin, as well as both human and mouse versions of the "don't eat me signal" Sirpa (collectively termed MISTRG mice). These cytokines are known to support different aspects of hematopoiesis, and thrombopoietin in particular has been shown to support HSC maintenance, suggesting these mice may provide a better environment for human PSC-derived HSCs than the more traditional mice used for human HSC engraftment. The majority of teratomas developed so far in MISTRG contain human hematopoietic cells, and the CD34+ population isolated from over half of the teratomas contained hematopoietic colony forming cells by colony forming assay. These findings further corroborate this approach as a viable method for studying human PSC to HSC differentiation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2953-2953
Author(s):  
Claudia Oancea ◽  
Brigitte Rüster ◽  
Jessica Roos ◽  
Anjali Dubey ◽  
Hannelore Held ◽  
...  

Abstract Abstract 2953 Poster Board II-929 Stem cells have been shown to play an important role in the pathogenesis and maintenance of a significant number of malignancies, including leukemias. Similar to normal hematopoiesis the AML cell population is thought to be hierarchically organized. According to this model, only a few stem cells (LSC) are able to initiate and maintain the disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. t(6;9)-positive AML is classified as a separate entity, because of its young age of onset and poor prognosis. The t(6;9) associated fusion protein is DEK/CAN. Assuming that in AML the genetic aberration, here the t(6;9) and the expression of DEK/CAN, represents the initiation event of the leukemogenic process we wanted i.) to disclose its effects on the biology of primitive hematopoietic stem cells (HSC) and its leukemogenic potential and ii.) to characterize the leukemia-initiating cell and the cell population able to maintain the disease in vivo. The model was based on a classical transduction/transplantation system of murine Sca1+/lin- HSC combined with a novel approach for the enrichment of transformed cells with long-term stem cell properties. We found that i.) DEK/CAN induced leukemia from the Sca1+/lin− HSC with a frequency of 20% and a long latency of 8-12 months. ii.) DEK/CAN did not efficiently block the differentiation of committed progenitors; iii.) DEK/CAN increased number of colony forming cells in Sca1+/lin− HSC which did not exhibit increased replating efficiency as compared to controls; iv.) DEK/CAN augmented ST-HSC potential but not LT-HSC of murine Sca1+/lin− HSCs, most likely due to its incapacity to up-regulate p21Cip1/Waf1 expression. Based on the hypothesis that DEK/CAN exerts its leukemogenic effects on only a small proportion of the Sca1+1/lin- population, we proceeded to select and to amplify rare DEK/CAN-positive cells with the leukemia-initiating potential, by a negative selection of cell populations with proliferation potential without long term stem cell-capacity (LT). Therefore we expressed DEK/CAN in Sca1+/lin− cells and enriched this population for LT- (lin−/Sca1+/c-Kit+/Flk2−) and ST-HSC (lin−/Sca1+/c-Kit+/Flk2+). After a passage first in semi-solid medium for 7 days and subsequent transplantation into lethally irradiated mice, cells from the ensuing CFU-S day12 were again transplanted into sublethally recipient mice. We here report that i.) after 4 to 42 weeks, 6/6 mice developed AML without signs of differentiation in the group transplanted with the lin−/Sca1+/c-Kit+/Flk2− population but not from that transplanted with lin−/Sca1+/c-Kit+/Flk2+ cells; ii.) the DEK/CAN-induced AML was efficiently transplanted into secondary recipients exhibiting a very aggressive clinical picture; iii.) the leukemic cell population gave origin to four different clearly distinct subpopulations defined by surface marker pattern as an expression of populations with distinct differentiation status, all able - after sorting - to give leukemia in sublethally irradiated recipients: lin−/Sca1+/c-Kit+/CD34− (LT) lin−/Sca1+/c-Kit+/CD34+ (ST), Sca1−/c-Kit+/Mac1+/Gr1+, Sca1−/c-Kit+/Mac1−/Gr1−. These findings strongly suggest that there is a difference between a leukemia-initiating (L-IC) and leukemia-maintaining (L-MC) cell population in the murine DEK/CAN leukemia model. In contrast to the L-IC, represented by a very rare subpopulation of primitive HSC, recalling a hierarchical stem cell model, the L-MC is represented by a larger cell population with a certain grade of phenotypical heterogeneity, but a high grade of functional homogeneity recalling a stochastic cancer induction model. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 140-140 ◽  
Author(s):  
Patrick Hanley ◽  
Ann Leen ◽  
Adrian P. Gee ◽  
Kathryn Leung ◽  
Caridad Martinez ◽  
...  

Abstract Cytomegalovirus, EBV and adenovirus are particularly problematic in patients after hematopoietic stem cell (HSCT) and cord blood transplantation (CBT) and are associated with significant morbidity and mortality. Deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders. We have developed two strategies to grow multivirus-specific donor-derived T-cells from peripheral blood (PB) and naive cord blood (CB). Using an adenoviral-vector expressing CMVpp65 to modify monocytes, DC and EBV-LCL we generated a single culture of PB or CB mononuclear cells that gave rise to multivirus-specific cytotoxic T-cells (CTL)(n=76). We have infused 34 patients with PB-derived CTL and 8 patients with CB-derived CTL. Patients received CTL infusions from 35 to 164days (median 84d) post HSCT or CBT at a median of 5x10e7 cells/m2. None developed >grade II GvHD or other toxicities over 3 months of safety monitoring after infusion. We observed up to a 5-fold increase in CMV- and EBV-specific T-cells by 4weeks post-CTL as measured by IFN-g ELISPOT assay. 33 viral reactivations were observed in patients before or immediately after CTL infusion. In the absence of conventional therapy, 8 of the 11 patients with CMV infection became negative for CMV in the blood within 7d of CTL infusion, with a corresponding rise in CMV-specific CTL in PB. Each of 10 patients with high EBV loads cleared their virus, as did 11 of 12 patients with adenoviral infections/disease. This study demonstrates that multivirus-specific CTL derived from the PB of seropositive donors as well as the CB of virus naive donors expand in vivo and are active against multiple viruses. Furthermore, by restoring immunity to multiple viruses simultaneously, the need for continued prophylaxis with pharmacotherapy is eliminated, thus, improving the efficiency and cost effectiveness of protecting HSCT and CBT recipients from these potentially lethal viruses. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 39 (3) ◽  
pp. 164-170 ◽  
Author(s):  
T O Kalynychenko

Significant progress in the promotion of procedural technologies associated with the transplantation of hematopoietic stem cells caused a rapid increase in activity. The exchange of hematopoietic stem cells for unrelated donor transplantations is now much easier due to the relevant international professional structures and organizations established to support cooperation and standard setting, as well as rules for the functioning of both national donor registries and cord blood banks. These processes are increasing every year and are contributing to the outpacing rates of development in this area. Products within their country should be regulated by the competent government authorities. This study analyzes the work of international and national levels of support for transplantation activity in the field of unrelated hematopoietic stem cell transplantation, the standardization order of technologies, as well as data that justify the need to create a network of donated umbilical cord blood banks in Ukraine as a factor in the development of allogeneic transplantation. This will promote the accessibility of international standards for the treatment of serious diseases for Ukrainian citizens.


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Craig Dorrell ◽  
Olga I. Gan ◽  
Daniel S. Pereira ◽  
Robert G. Hawley ◽  
John E. Dick

Abstract Current procedures for the genetic manipulation of hematopoietic stem cells are relatively inefficient due, in part, to a poor understanding of the conditions for ex vivo maintenance or expansion of stem cells. We report improvements in the retroviral transduction of human stem cells based on the SCID-repopulating cell (SRC) assay and analysis of Lin− CD34+CD38−cells as a surrogate measure of stem cell function. Based on our earlier study of the conditions required for ex vivo expansion of Lin−CD34+ CD38− cells and SRC, CD34+–enriched lineage–depleted umbilical cord blood cells were cultured for 2 to 6 days on fibronectin fragment in MGIN (MSCV-EGFP-Neo) retroviral supernatant (containing 1.5% fetal bovine serum) and IL-6, SCF, Flt-3 ligand, and G-CSF. Both CD34+CD38− cells (20.8%) and CFC (26.3%) were efficiently marked. When the bone marrow of engrafted NOD/SCID mice was examined, 75% (12/16) contained multilineage (myeloid and B lymphoid) EGFP+ human cells composing as much as 59% of the graft. Half of these mice received a limiting dose of SRC, suggesting that the marked cells were derived from a single transduced SRC. Surprisingly, these culture conditions produced a large expansion (166-fold) of cells with the CD34+CD38− phenotype (n = 20). However, there was no increase in SRC numbers, indicating dissociation between the CD34+CD38− phenotype and SRC function. The underlying mechanism involved apparent downregulation of CD38 expression within a population of cultured CD34+CD38+ cells that no longer contained any SRC function. These results suggest that the relationship between stem cell function and cell surface phenotype may not be reliable for cultured cells. (Blood. 2000;95:102-110)


Sign in / Sign up

Export Citation Format

Share Document