Whole Exome Sequencing to Predict Response to Hypomethylating Agents in MDS

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1698-1698 ◽  
Author(s):  
Holleh D Husseinzadeh ◽  
Edward P Evans ◽  
Kenichi Yoshida ◽  
Hideki Makishima ◽  
Andres Jerez ◽  
...  

Abstract Abstract 1698 Hypomethylating agents decitabine and azacitidine are standard treatments for myelodysplastic syndromes (MDS). In their use, one hopes to rectify cytopenias and prolong survival by retarding further disease progression. However, individual treatment responses vary from complete remission (CR) to complete refractoriness. In general, at least 4 cycles of therapy are administered prior to assessing response. Thus, patients may have prolonged exposure to ineffective therapy, suffering toxicities without clinical benefit, while alternative and potentially more effective treatments are delayed. Currently, there are no reliable phenotypic or mutational markers for predicting response to hypomethylating agents. Once whole exome sequencing (WES) became available for more routine analysis, we theorized that somatic mutational patterns may help identify patients who would most benefit from these drugs, thereby maximizing response rate by rational patient selection. To pursue this hypothesis, we screened a cohort of 168 patients with MDS who received either azacitidine or decitabine for the presence of somatic mutations. Only those who received sufficient therapy, i.e., completed at least 4 cycles, were selected for outcome analysis. Targeted Sanger sequencing, including a panel of up to 19 genes frequently affected by somatic mutations was performed. For a representative subset of 26 patients (this subset is expanding) of whom there were 15 responders and 11 non-responders, mutational analysis was performed by WES to select target genes for further analysis. WES utilizes paired DNA (tumor vs. CD3+ lymphocytes) to produce raw sequence reads aligned using Burrows-Wheeler Aligner (BWA). Variants are detected using the Broad Institute's Best Practice Variant Detection GATK toolkit. Median age was 68 years (range, 55–85), 50% were female, and MDS subtypes were as follows: RA/RCUD/RARS 13%, RCMD 16%, RAEB-1/2 20%, MDS/MPN & CMML-1/2 31%, and sAML 20%. Response was assessed using IWG 2006 criteria at 4 and 7 months after therapy initiation. Overall response was 48%; rate of CR (including marrow/cytogenetic CR) was 28%, any HI 20%, SD 22%, and no response 29%. The cohort was then dichotomized into “responders” and “non-responders,” with responders classified as those achieving CR or any HI. Baseline patient characteristics were similar between both groups, including average age at treatment initiation, disease subtypes, proportion of abnormal/complex karyotypes, and presence of common cytogenetic aberrations. Overall, the most frequently mutated genes include TET2/IDH1/IDH2, SRSF2, ASXL1, SF3B1, RUNX1, EZH2/EED/SUZ12, SETBP1, CBL, and PPIAF2. The highest rate of refractoriness was noted in mutants of TET2/IDH1/IDH2 (67%), SF3B1 (67%), U2AF1/2 (67%). We also identified several genes whose mutants were few but associated exclusively with refractory disease (100%), including KIT, ZRSR2, PRPF8, LUC7L2. We next applied a recursive partitioning algorithm to construct a decision tree for identifying the most pivotal mutations associated with response: we found mutant CBL and PPFIA2 to be strongly associated with response, whereas mutant U2AF1/2, SF3B1 and PRPF8 were strongly associated with refractoriness. Our final approach was to dichotomize the cohort by the presence/absence of each mutation/group of mutations, and response within mutant vs. wild type cases was compared. Among refractory cases, TET2/IDH1/IDH2 (26%) and SF3B1 (17%) were most frequently mutated; among responders, mutations in RUNX1 (19% vs. 4%]), CBL (14% vs. 0%), SRSF2 (23% vs. 9%), and SETBP1 (18% vs. 4%) were most frequent. When multiple genes were combined in “either-or” fashion, mutation in TET2, SF3B1, PRPF8, or LUCL71 was significantly associated with refractoriness (52%, p=.0287), whereas mutations of RUNX1, CBL, SRSF2, SETBP1, or PPFIA2 mutation was significantly associated with response (86%, p=.0001). Mutational patterns appear to predict response to standard hypomethylating agents. Identification of the most predictive genes could guide development of molecular maker-based selection of patients for hypomethylating agent therapy, but will require ongoing analysis and additional prospective testing for validation. Disclosures: Advani: Genzyme: Honoraria, Research Funding; Immunomedics: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 659-659
Author(s):  
Swapna Thota ◽  
Paul Lakin ◽  
Holleh Husseinzadeh ◽  
Hideki Makishima ◽  
Bartlomiej P Przychodzen ◽  
...  

Abstract Hypomethylating agents decitabine and azacitidine are standard treatments for MDS. In their use, one hopes to rectify cytopenias and prolong survival by retarding further disease progression. However, individual treatment responses vary from complete remissions (CR) to complete refractoriness. In general, at least months of therapy is needed prior to assessing response. Thus, patients may need to be subjected to prolonged exposure to ineffective therapy, suffering toxicities without clinical benefit, while alternative and potentially more effective treatments are delayed. Currently, there are no reliable phenotypic or mutational markers for predicting response to hypomethylating agents. Once whole exome sequencing (WES) became available for more routine analysis, we theorized that somatic mutational patterns may help identify patients who would most benefit from these drugs, thereby maximizing response rate by rational patient selection. To pursue this hypothesis, we screened a cohort of 168 patients with MDS who received either azacitidine or decitabine for the presence of somatic mutations. Only those who received sufficient therapy, i.e., completed at least 4 cycles, were selected for outcome analysis. WES and targeted deep NGS for a subset of 60 genes most frequently affected by somatic mutations in MDS (as determined in a set of 200 exome MDS project, see abstract from our group) was applied to 94 evaluable patients. Median age was 68 years (range, 26-85), 34% were female, and MDS subtypes were as follows: RA/RCUD/RARS 7%, RCMD 20%, RAEB-1/2 32%, MDS/MPN & CMML-1/2 21%, and sAML 16%. Response was assessed using IWG 2006 criteria at 4 and 7 months after therapy initiation. Overall response was 34%; rate of CR (including marrow/cytogenetic CR) was 22%, any HI 7%, SD 19%, and no response 35%. The cohort was then dichotomized into “responders” (N=64) and “non-responders” (N=69) with responders classified as those achieving CR/PR or any HI. Baseline patient characteristics were similar between both groups, including average age at treatment initiation, sex, disease subtypes, proportion of abnormal/complex karyotypes, and presence of common cytogenetic aberrations. Overall, the most frequently mutated genes include: TET2 (12%), IDH1/IDH2 (5%), SRSF2 (11%), ASXL1 (28%), SF3B1 (13%), RUNX1 (11%), EZH2/EED/SUZ12 (11%), SETBP1 (6%), CBL (7%), and PPFIA2 (10%). For some analyses we also divided mutations into functional gene families; e.g., DNMT family (DNMT1, DNMT3A, DNMT3B), PRC2 family (EZH2, EED, SUZ12, JARID2, RBBP4, PHF1), IDH family (IDH1, IDH2), CBL family (CBL, CBLB), RAS family (NRAS, KRAS, HRAS, NF1, NF2, RIT1, PTPN11), and among others. The most common molecular abnormalities in responders included the presence of complex karyotype (19% vs. 26% in refractory), del7q/-7 (18% vs. 22%), del5q (19% vs. 15%), and mutations in DNMT3 (25% vs. 22%), ASXL1 (25% vs. 32%), and others. Similarly, the most common defects found in refractory included also the U2AF1/2 family of genes (16% vs. 7% in responders). When compared and selected by the lowest p value, the top mutations in terms of predicting response were SRSF2 (OR 2.4), cohesin (5.1), ATM (OR 5.6) and PHF6 (OR 4.22). Mutations predicting non-response include RAS (OR .3), U2AF1/2 (OR 0.4) and LUC7L defects (OR .53). To generate better predictors, we have combined mutations in “either/or” fashion. For instance, the presence of either SRSF2 and cohesin (p=.0318) or cohesin and PHF6 mutations (p=.02) will be considered predictors of response and the presence of either or RAS/U2AF1(p=.019) and cohesin/ATM (p=.008) and SRSF2 (p=.006) predictors of refractoriness. In sum, mutational patterns may be helpful in identifying patients who may benefit from hypomethylating therapies. Identification of the most predictive genes could guide development of molecular marker-based selection of patients for hypomethylating agent therapy, but will require ongoing analysis and additional prospective testing for validation Disclosures: Makishima: AA & MDS international foundation: Research Funding; Scott Hamilton CARES grant: Research Funding. Maciejewski:NIH: Research Funding; Aplastic anemia&MDS International Foundation: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1551-1551
Author(s):  
Vera Adema ◽  
Mar Mallo ◽  
Leonor Arenillas ◽  
María Díez-Campelo ◽  
Elisa Luño ◽  
...  

Abstract Introduction Myelodysplastic Syndromes (MDS) are a heterogeneous group of clonal myeloid stem cells disorders with high prevalence in the elderly characterized by inefficient hematopoiesis, peripheral blood (PB) cytopenias, and an increased risk of transformation to acute myeloid leukemia (AML). The karyotype is the clinical parameter with the strongest prognostic impact according the IPSS-R (Greenberg et al., 2012). The most frequent cytogenetic alteration is the chromosome 5q deletion (del[5q]) which as a single anomaly, confers a good prognosis and predicts an excellent response to lenalidomide. Whether other genetic abnormalities routinely cooperate with del(5q) is not known. Whole-exome sequencing (WES) is a powerful tool to identify somatic mutations in protein coding genes that might cooperate with del(5q). In order to better understand the genetic basis of MDS with del(5q), we performed whole-exome sequencing (assessing 334,378 exons) of tumor-normal paired samples from 21 MDS patients. Herein we describe the preliminary findings. The analysis is ongoing and the complete results will be presented in the meeting. Methods A total of 21 patients with MDS (16 with del(5q) as a sole abnormality, 3 with del(5q) and additional alterations and 2 with normal karyotype) were included in our study. We examined a total of 25 tumor samples (21 diagnostic bone marrow (BM) samples with matched CD3+ cells as a controls, additional BM samples from 3 patients during lenalidomide treatment and 1 bone marrow sample from a del(5q) patient after AML progression). DNA was extracted from BM samples and from isolated peripheral blood CD3+ cells (magnetic-activated cell sorting (MACS), MiltenyiBiotec GmbH, Germany). The purity of CD3+ cells was assessed by FC 500 flow cytometer (Beckman Coulter, Hialeah, Fl, USA). Only DNA that fulfilled quality controls required by WES were submitted. For each diagnostic sample, we performed Conventional G-banding cytogenetics and fluorescence in situ hybridization (FISH, to confirm or dismiss 5q deletions). Whole-exome targeted capture was carried out on 3 μg of genomic DNA, using the SureSelect Human Exome Kit 51Mb version 4 (Agilent Technologies, Inc., Santa Clara, CA, USA). The captured and amplified exome library was sequenced with 100 bp paired-end reads on an Illumina HiSeq2000. Whole-exome sequencing data were analyzed using an in-house bioinformatics pipeline as previously reported. Somatic mutations identified as alterations present in tumor but not in the matched CD3+ sample were validated by Sanger sequencing. Results In our preliminary analysis of WES from 12 patients (10 patients with 5q- and 2 patients with normal karyotype), a total of 249 non-silent somatic variant candidates were identified, of which 146 were confirmed as somatic mutations. Recurrent mutations were observed in three genes (ASXL1, NBPF10 and SF3B1) in 3 different patients. Seven genes (HRNR, JAK2, POTEG, MUC5B, PHLDA, TTN, ZNF717) were mutated in two patients. Mutations in several genes known to be mutated in MDS (ASXL1, JAK2, RUNX1, SF3B1, SRSF2 and TET2) were also identified. Patients with the 5q deletion had an average of 11 mutations whereas patients with normal karyotype had a higher mean (14.5). Mutated genes identified in both groups were HRNR, JAK2, MUC5B, NBPF10 and SF3B1. No mutations in TP53 were detected in this subset. Pathway analysis of the complete list of somatically mutated genes will be carried out once all 21 patients are analyzed. The four in-treatment samples will be examined from their matched diagnostic samples. Conclusions Whole-exome sequencing of largely del(5q) MDS patient samples identified both known and previously unreported somatic mutations. Analysis of additional samples will allow a more complete description of the genes and pathways that may cooperate with del(5q) in the development and progression of MDS. Acknowledgments Financial support: This work has been supported (in part) by a grant from Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Spain (PI 11/02010); by Red Temática de Investigación Cooperativa en Cáncer (RTICC, FEDER) (RD07/0020/2004; RD12/0036/0044); Acción COST BM0801: European Genomics and Epigenomics Study on MDS and AML; Sociedad Española de Hematología y Hemoterapia (SEHH) and MDS Celgene. Footnotes Rafael Bejar and Francesc Sole contributed equally. Disclosures: Díez-Campelo: Novartis and Celgene: Honoraria, Research Funding. Cañizo:Celgene Jansen-Cilag Arry Novartis: Membership on an entity’s Board of Directors or advisory committees, Research Funding. Sanchez:Celgene: Honoraria, Research Funding. Bejar:Genoptix: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Solé:Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2770-2770 ◽  
Author(s):  
Paolo Ghia ◽  
Viktor Ljungström ◽  
Eugen Tausch ◽  
Andreas Agathangelidis ◽  
Annika Scheffold ◽  
...  

Abstract Introduction: Idelalisib (IDELA) is an ATP-competitive, reversible, and selective small molecule inhibitor of the delta isoform of phosphatidylinositol 3-kinase (PI3Kδ) approved for the treatment, in combination with rituximab, of patients with relapsed chronic lymphocytic leukemia (CLL). In the relapsed CLL randomized, controlled trials, IDELA + rituximab showed high response rates with improved progression-free and overall survival as compared with placebo + rituximab. While IDELA therapy has significant efficacy, disease progression after response occurs, indicating that escape mechanisms may develop. However, the molecular basis for relapse or progressive disease (PD) in CLL patients treated with IDELA has not yet been characterized. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from 13 CLL patients enrolled in the phase 3 studies; NCT01539512 (study 116; IDELA + rituximab vs placebo + rituximab), 116 extension study NCT01539291 (study 117) and NCT01659021 (study 119; IDELA + ofatumumab). Sample selection criteria included treatment period of at least 180 days (range: 243-703 days), achieving at least partial nodal response followed by PD, PD did not occur within a drug interruption window, PD was not associated with Richter's transformation, and PBMC samples were available from both baseline and time of PD. Whole-exome sequencing (WES) was conducted on the matched samples from 13 subjects fitting the above criteria. In 6/13 cases, DNA was available from CD19+/CD5+ enriched tumor cells, and neutrophils or T-lymphocytes served as a source of germline DNA. These 6 patients were considered as a discovery set for mutational analysis. Established bioinformatics tools were used for detection of somatic mutations and for the comparison of baseline and PD samples. Results: Baseline clinical patient profiles indicated that 12 of 13 patients with PD had unmutated IGHV genes and 8 patients carried TP53 aberrations (ie, 17p deletion and/or TP53 mutation). WES resulted in a mean read depth of 106X within the targeted coding region across samples. In the discovery set, on average 25 somatic mutations (range: 4-44) at baseline and 32 mutations (range: 15-81) at progression were identified. By comparing baseline and PD samples, we identified 88 PD-associated mutations. These specific mutations were tested for in a complete set of 13 patient samples; however, no recurrent progression-associated mutations were identified in more than 1 patient. In particular, no progression-associated mutations were identified in the PI3K signaling pathway or in any other related pathway. Conclusion: Across 3 phase 3 studies in relapsed CLL, WES on 13 samples from patients with PD while on IDELA treatment were evaluated. This analysis detected no relapse-associated mutations in common across this patient set; in particular, no mutations were identified in the drug-binding site (ie, "gateway mutation") or in any other related signaling pathway. Based on these results, we conclude there is no common mutational mechanism of IDELA resistance in this patient group. Disclosures Ghia: Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Roche: Honoraria, Research Funding; Adaptive: Consultancy; Abbvie: Consultancy, Honoraria. Tausch:Gilead: Other: Travel support, Speakers Bureau; Celgene: Other: Travel support; Amgen: Other: Travel support. Owen:Roche: Honoraria, Research Funding; Pharmacyclics: Research Funding; Celgene: Honoraria, Research Funding; Abbvie: Honoraria; Lundbeck: Honoraria, Research Funding; Novartis: Honoraria; Janssen: Honoraria; Gilead: Honoraria, Research Funding. Barrientos:Gilead: Consultancy, Research Funding; Janssen: Consultancy; AbbVie: Consultancy, Research Funding. Munugalavadla:Gilead Sciences: Employment, Equity Ownership. Degenhardt:Gilead Sciences: Employment, Equity Ownership. Kim:Gilead Sciences: Employment, Equity Ownership. Dubowy:Gilead Sciences: Employment, Equity Ownership. Dreiling:Gilead Sciences: Employment, Equity Ownership. Rosenquist:Gilead Sciences: Speakers Bureau. Stilgenbauer:Hoffmann-La Roche: Consultancy, Honoraria, Other: Travel grants , Research Funding; AbbVie: Consultancy, Honoraria, Other: Travel grants, Research Funding; GSK: Consultancy, Honoraria, Other: Travel grants , Research Funding; Pharmacyclics: Consultancy, Honoraria, Other: Travel grants , Research Funding; Janssen: Consultancy, Honoraria, Other: Travel grants , Research Funding; Mundipharma: Consultancy, Honoraria, Other: Travel grants , Research Funding; Celgene: Consultancy, Honoraria, Other: Travel grants , Research Funding; Amgen: Consultancy, Honoraria, Other: Travel grants, Research Funding; Novartis: Consultancy, Honoraria, Other: Travel grants , Research Funding; Sanofi: Consultancy, Honoraria, Other: Travel grants , Research Funding; Genzyme: Consultancy, Honoraria, Other: Travel grants , Research Funding; Genentech: Consultancy, Honoraria, Other: Travel grants , Research Funding; Gilead: Consultancy, Honoraria, Other: Travel grants , Research Funding; Boehringer Ingelheim: Consultancy, Honoraria, Other: Travel grants , Research Funding.


Author(s):  
Yuanqing Yan ◽  
Rebecca Martinez ◽  
Maria N. Rasheed ◽  
Joshua Cahal ◽  
Zhen Xu ◽  
...  

Author(s):  
Juan Chen ◽  
Yan Li ◽  
Jianlei Wu ◽  
Yakun Liu ◽  
Shan Kang

Abstract Background Malignant ovarian germ cell tumors (MOGCTs) are rare and heterogeneous ovary tumors. We aimed to identify potential germline mutations and somatic mutations in MOGCTs by whole-exome sequencing. Methods The peripheral blood and tumor samples from these patients were used to identify germline mutations and somatic mutations, respectively. For those genes corresponding to copy number alterations (CNA) deletion and duplication region, functional annotation of was performed. Immunohistochemistry was performed to evaluate the expression of mutated genes corresponding to CNA deletion region. Results In peripheral blood, copy number loss and gain were mostly found in yolk sac tumors (YST). Moreover, POU5F1 was the most significant mutated gene with mutation frequency > 10% in both CNA deletion and duplication region. In addition, strong cytoplasm staining of POU5F1 (corresponding to CNA deletion region) was found in 2 YST and nuclear staining in 2 dysgerminomas (DG) tumor samples. Genes corresponding to CNA deletion region were significantly enriched in the signaling pathway of regulating pluripotency of stem cells. In addition, genes corresponding to CNA duplication region were significantly enriched in the signaling pathways of RIG-I-like receptor, Toll-like receptor, NF-kappa B and Jak–STAT. KRT4, RPL14, PCSK6, PABPC3 and SARM1 mutations were detected in both peripheral blood and tumor samples. Conclusions Identification of potential germline mutations and somatic mutations in MOGCTs may provide a new field in understanding the genetic feature of the rare biological tumor type in the ovary.


2019 ◽  
Vol 10 ◽  
Author(s):  
Alejandro Mendoza-Alvarez ◽  
Beatriz Guillen-Guio ◽  
Adrian Baez-Ortega ◽  
Carolina Hernandez-Perez ◽  
Sita Lakhwani-Lakhwani ◽  
...  

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Keiichi Akizuki ◽  
Masaaki Sekine ◽  
Yasunori Kogure ◽  
Takuro Kameda ◽  
Kotaro Shide ◽  
...  

Abstract Background The occurrence of a mediastinal germ cell tumor (GCT) and hematological malignancy in the same patient is very rare. Due to its rarity, there have been only two reports of the concurrent cases undergoing detailed genetic analysis with whole-exome sequencing (WES), and the possible clonal relationship between the both tumors remained not fully elucidated. Methods We performed whole-exome sequencing analysis of mediastinal GCT and acute myeloid leukemia (AML) samples obtained from one young Japanese male adult patient with concurrent both tumors, and investigated the possible clonal relationship between them. Results Sixteen somatic mutations were detected in the mediastinal GCT sample and 18 somatic mutations in the AML sample. Mutations in nine genes, including TP53 and PTEN both known as tumor suppressor genes, were shared in both tumors. Conclusions All in our case and in the previous two cases with concurrent mediastinal GCT and AML undergoing with whole-exome sequencing analysis, TP53 and PTEN mutations were commonly shared in both tumors. These data not only suggest that these tumors share a common founding clone, but also indicate that associated mediastinal GCT and AML harboring TP53 and PTEN mutations represent a unique biological entity.


2020 ◽  
Vol Volume 13 ◽  
pp. 6485-6496 ◽  
Author(s):  
Ao-Xiang Guo ◽  
Fan Xiao ◽  
Wei-Hua Shao ◽  
Yan Zhan ◽  
Le Zhang ◽  
...  

2016 ◽  
Author(s):  
Shintaro Iwata ◽  
Yasutoshi Tatsumi ◽  
Tsukasa Yonemoto ◽  
Hiroto Kamoda ◽  
Takeshi Ishii ◽  
...  

Author(s):  
Andrew V Uzilov ◽  
Patricia Taik ◽  
Khadeen C Cheesman ◽  
Pedram Javanmard ◽  
Kai Ying ◽  
...  

Abstract Context Pituitary corticotroph adenomas are rare tumors that can be associated with excess adrenocorticotropin (ACTH) and adrenal cortisol production, resulting in the clinically debilitating endocrine condition Cushing disease. A subset of corticotroph tumors behave aggressively, and genomic drivers behind the development of these tumors are largely unknown. Objective To investigate genomic drivers of corticotroph tumors at risk for aggressive behavior. Design Whole-exome sequencing of patient-matched corticotroph tumor and normal deoxyribonucleic acid (DNA) from a patient cohort enriched for tumors at risk for aggressive behavior. Setting Tertiary care center Patients Twenty-seven corticotroph tumors from 22 patients were analyzed. Twelve tumors were macroadenomas, of which 6 were silent ACTH tumors, 2 were Crooke’s cell tumors, and 1 was a corticotroph carcinoma. Intervention Whole-exome sequencing. Main outcome measure Somatic mutation genomic biomarkers. Results We found recurrent somatic mutations in USP8 and TP53 genes, both with higher allelic fractions than other somatic mutations. These mutations were mutually exclusive, with TP53 mutations occurring only in USP8 wildtype (WT) tumors, indicating they may be independent driver genes. USP8-WT tumors were characterized by extensive somatic copy number variation compared with USP8-mutated tumors. Independent of molecular driver status, we found an association between invasiveness, macroadenomas, and aneuploidy. Conclusions Our data suggest that corticotroph tumors may be categorized into a USP8-mutated, genome-stable subtype versus a USP8-WT, genome-disrupted subtype, the latter of which has a TP53-mutated subtype with high level of chromosome instability. These findings could help identify high risk corticotroph tumors, namely those with widespread CNV, that may need closer monitoring and more aggressive treatment.


Sign in / Sign up

Export Citation Format

Share Document