Immunornase Therapy Of Lymphoma With Novel CD22-Targeting Quadruple Ranpirnase

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3075-3075
Author(s):  
Donglin Liu ◽  
Thomas M Cardillo ◽  
David M Goldenberg ◽  
Chien-Hsing Chang

Abstract Ranpirnase (Rap) is an amphibian ribonuclease showing anti-tumor activity in clinical studies. We have previously reported that targeted delivery of Rap by chemical conjugation or recombinant fusion with antibodies specific for CD22, CD74 and Trop-2 could enhance its in vitro cytotoxicity as high as 10,000-fold in selected malignant cell lines. The DOCK-AND-LOCKTM (DNLTM) platform technology is a powerful method to construct novel agents of defined composition and retained bioactivity by site-specific conjugation of two types of modules, one containing the dimerization and docking domain (DDD) of cAMP-dependent protein kinase A (PKA), referred to as the DDD module, and the other bearing the anchoring domain (AD) of an interactive A-kinase anchoring protein (AKAP), referred to as the AD module. Among the distinctive features of DNL are the spontaneous formation of a dimer of the DDD module and the self-assembly of the DDD module with the AD module into a non-covalent complex, which is subsequently rendered covalent with disulfide bonds to enhance stability in vivo. The amino acid sequences of a pair of DDD and AD linkers useful for the DNL conjugation are termed DDD2 and AD2, respectively. To further explore the potential of Rap-based immunotoxins, we expressed a DDD2-module of Rap in E. coli and linked the resulting dimer of Rap to an AD2-module of a humanized IgG (expressed in myeloma cells) at each of the carboxyl termini of either the light chain (the CK-format) or the heavy chain (the CH3-format), thus producing a class of novel immunoRNases with quadruple Rap. To date, we have evaluated a pair of such constructs, 22* -Rap and 22-Rap, comprising four copies of Rap linked to the CK or CH3 termini of epratuzumab (humanized anti-CD22), respectively, in a panel of CD22-expressing human lymphoma/leukemia cell lines, which include Burkitt lymphoma (Daudi, Raji, Ramos), acute lymphoblastic leukemia (REH, 697, and RS4;11), and mantle cell lymphoma (Granta-519 and Jeko-1). The results of the MTS assay indicated that 22* -Rap was highly active (EC50 ≤ 1 nM) against Daudi, Ramos, Raji, REH, 697, RS4;11, and Granta-519 cells. Comparable cytotoxicity with EC50 values in the subnanomolar range also was observed for 22-Rap in Ramos, Daudi and Jeko-1 cells. In contrast, neither the individual DNL components (IgG-AD2 or Rap-DDD2), tested alone or in combination, nor E1* -Rap, the counterpart of 22* -Rap, generated by substituting epratuzumab with hRS7 IgG (humanized anti-Trop-2), showed notable cytotoxicity. In a disseminated Daudi xenograft model in which treatment with 10 or 20 µg of 22* -Rap (q4dx4) started 7 days after intravenous inoculation of the tumor cells, all 10 mice (5 in each group) survived over 126 days and were tumor-free, whereas the control groups, treated with saline, epratuzumab (25 µg, q4dx4), or the same dose-schedule of nonspecific control, E1* -Rap, succumbed within 36 days. These promising results, together with the findings that 22* -Rap at 10 nM was marginally toxic to B cells and other hematological cells in PBMCs, encourage further development of 22* -Rap or 22-Rap for therapy of CD22-expressing lymphomas and leukemias. Disclosures: Liu: IBC Pharmaceuticals, Inc.: Employment, Stock option, Stock option Other; Immunomedics, Inc.: Employment, Stock option Other. Cardillo:Immunomedics, Inc.: Employment, Stock option Other. Goldenberg:Immunomedics: Employment, stock options, stock options Patents & Royalties. Chang:IBC Pharmaceuticals, Inc.: Employment, Stock option, Stock option Other; Immunomedics, Inc: Employment, Stock option Other.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 889-889
Author(s):  
Giovanni Roti ◽  
Jun Qi ◽  
Samuel Kitara ◽  
Anthony C. Varca ◽  
Marta Sanchez-Martin ◽  
...  

Abstract Several studies strongly support the development of Notch1 inhibitors for targeted cancer therapy. This idea is most compelling for T cell acute lymphoblastic leukemia/lymphoma (T-ALL) where activating mutations of NOTCH1 are present in 55-60% of the cases, and cancer dependency has been well established. We previously demonstrated that a small-molecule inhibitor of SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase), thapsigargin, had NOTCH1 dependent anti-leukemia activity in mouse models of human T-ALL. Interestingly thapsigargin preferentially inhibits the maturation of mutant NOTCH1 compared to wild type NOTCH1 and NOTCH2 receptors. This selectivity provides a therapeutic window not observed before with other Notch modulators, including γ-secretase inhibitors or antibody-based approaches. To avoid the potential non-specific toxicityof thapsigargin secondary to intracellular calcium shifts, we leveraged the addiction of ALL to folic acid (FA), and we tagged folate to a permissive site on an active alcohol derivative of thapsigargin (8-O-debutanoylthapsigargin) via a cleavable ester linkage (JQ-FT). We explored folate conjugation of thapsigargin as an anti-cancer strategy for several reasons: the restricted expression of folate receptors (FR1-4) on cancer cells, the affinity of folic acid for FR binding and the FR endocytic mechanism that allows the internalization of large probes. We determined that folate-conjugates, including JQ-FT, enter T-ALL cells by FR2 binding and endocytosis. Importantly, T-ALL cell lines demonstrated stronger folic acid fluorescence-tagged probe (FL-FITC) labeling compared to human CD3+ T cells, providing support for leukemia-specific targeting. To determine if these effects were FR mediated, we treated T-ALL cells with JQ-FT in the presence or absence of the competitive inhibitor FA (10 and 100 μM). Co-treatment with FA diminished the negative growth effects of JQ-FT on T-ALL cells. This result supports FR-mediated internalization of JQ-FT. Next, we demonstrated that JQ-FT alters the growth of T-ALL cell lines, induces apoptosis and a G1/G0 arrest. Similar to thapsigargin, JQ-FT treatment decreased the levels of the activated form of NOTCH1, ICN1, and trans-membrane NOTCH1, while it increased full-length NOTCH1. Consequently, the NOTCH1 transcriptional targets, MYC, DTX1 and HES1, were repressed as measured by qRT-PCR. As predicted, the addition of free FA to the media rescued the decrement of ICN1. To assess the translational significance of these findings, we studied patient-derived xenograft (PDX) cells. JQ-FT treatment inhibited the viability of NOTCH1-mutated PDX cells in vitro. In addition, JQ-FT treatment resulted in a loss of transmembrane NOTCH1, leading to the depletion of ICN1. In contrast, no effect was observed in PDX T-ALL cells possessing wild-type NOTCH1. Consistent with these results, no transcriptional changes were observed in NOTCH1 target genes in wild type PDX samples, supporting the notion that mutated NOTCH1 receptors are more sensitive to SERCA inhibitors, including JQ-FT treatment, than are wild type NOTCH1 receptors in primary patient T-ALL. To explore the therapeutic efficacy of JQ-FT in vivo, we studied its effects on a syngeneic T-ALL mouse model carrying a NOTCH1 L1601P ΔPEST, a common mutation observed in the human disease. We first established the maximal tolerated dose (MTD) of JQ-FT as 60 mg/kg/day in mice administered by daily intraperitoneal injection. Notably, this MTD is 150-fold improved over our prior established MTD of unconjugated thapsigargin. Following five days of treatment, a decrease in tumor growth was observed, confirmed pathologically by a decrease in the leukemic infiltration in the bone marrow, spleen and liver, and clinically by a reduction in spleen weight. Pharmacodynamic modulation of the Notch pathway was validated by measurement of reduced ICN1 expression in T-ALL cells from JQ-FT-treated animals as compared to vehicle-treated controls. In summary, we report the development of the first-in-class NOTCH1 inhibitor with dual selectivity for leukemia over normal cells and NOTCH1-mutant over wild-type receptors. JQ-FT is recognized by folate receptors on the leukemia cell surface and delivered into cells as a mutant NOTCH1-targeted anti-leukemic agent. In mechanistic and translational models of T-ALL, we demonstrated NOTCH1-specific inhibition in vitro and in vivo. Disclosures Bradner: Novartis Institutes for BioMedical Research: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1410-1410
Author(s):  
Edward Allan R. Sison ◽  
Daniel Magoon ◽  
Li Li ◽  
Rachel E. Rau ◽  
Colleen E. Annesley ◽  
...  

Abstract Abstract 1410 Background: Activation of CXCR4 by the chemokine SDF-1 (CXCL12) results in the migration of leukemia cells to marrow niches that may contribute to chemoresistance and relapse. We previously showed that in vitro chemotherapy (chemo) treatment modulates CXCR4 expression in leukemia cell lines and primary pediatric AML samples, and that chemo-induced increases in surface CXCR4 (s-CXCR4) results in increased chemotaxis toward an SDF-1 gradient and decreased chemo-induced apoptosis when co-cultured with human marrow stroma feeder layers. We hypothesized that 1) CXCR4 inhibition by plerixafor (P) would sensitize leukemias to chemo through the interruption of leukemia-stromal cell signaling and 2) the degree of chemo-induced s-CXCR4 upregulation would be a predictive biomarker of the efficacy of P as a chemosensitizer. Because B-precursor ALL are known to highly express CXCR4, we tested these hypotheses in vitro using ALL cell lines and in vivo using a xenograft model of a high-risk pediatric leukemia, infant ALL. In Vitro Methods/Results: ALL cell lines were pretreated for 72 hours with araC (A), dauno, vcr, and vehicle control (C). Chemo pretreatment induced upregulation of s-CXCR4 compared to C. Viable cells were then isolated using Ficoll and plated off stroma (O), on stroma (S), or pretreated with P for 30 minutes prior to plating on stroma (P+S). Cells were then treated for an additional 72 hours with full dose ranges of chemo. Apoptosis was measured with Annexin V/7-AAD, and IC50 was calculated. Overall, IC50 values were highest in S, followed by P+S, then O, demonstrating that upregulation of s-CXCR4 leads to stromal protection, and that stromal protection is diminished by treatment with P. Cells with higher levels of s-CXCR4 upregulation had greater differences between S IC50 and O IC50, compared to cells with lower s-CXCR4 upregulation, suggesting that the degree of s-CXCR4 upregulation is predictive of the degree of stromal protection. Cells with higher s-CXCR4 upregulation also had greater differences between S IC50 and P+S IC50, suggesting that P diminishes stromal protection more effectively in leukemias that highly upregulate s-CXCR4 in response to chemo. Xenograft Methods/Results: Infant ALL patient samples were transplanted into sublethally irradiated NOG mice. After 3 weeks, we treated cohorts (n=5) with single doses of P, A, P followed by A 4 hours later (P+A), or C. We dosed A below the maximal tolerated dose (MTD) to facilitate assessment of P+A synergy. Mice were sacrificed 4 weeks post treatment and cells were isolated from bone marrow (BM), spleen, liver, and peripheral blood (PB) and analyzed by FACS. Leukemic blasts were defined as human CD19+ and CD45+. S-CXCR4 MFI was measured in the blast population. Overall, leukemic burden was similar in C, A, and P, consistent with conservative dosing of A and minimal direct anti-leukemic effect of P. A resulted in increased blasts in spleen and liver compared to C, possibly due to higher levels of s-CXCR4, while P resulted in increased blasts in liver, possibly due to mobilization of blasts. The key finding was that P+A resulted in decreased blasts in BM, spleen, liver, and PB, demonstrating a synergistic effect between P and A. Interestingly, P+A led to a higher reduction in blasts in a sample with A-induced s-CXCR4 upregulation, compared to a sample that did not upregulate s-CXCR4 in response to A. In all treatment cohorts, s-CXCR4 expression was highest in PB blasts, followed by liver, and BM/spleen. Conclusions: Chemo-induced s-CXCR4 upregulation confers stromal-mediated chemoprotection in vitro that can be reversed by P. In vivo, P is an effective chemosensitizer. S-CXCR4 expression is increased in blasts located outside the BM, suggesting that blasts migrating from BM into PB upregulate s-CXCR4 as they home to new niches. Extramedullary disease may develop as a result of chemo-induced upregulation of s-CXCR4 or through mobilization of blasts by P alone. Importantly, P+A resulted in decreased leukemic burden in our infant ALL xenografts, suggesting that chemo-induced increases in s-CXCR4 and P-induced blast mobilization can be overcome. Finally, the efficacy of P as a chemosensitizer was predicted by the degree of chemo-induced s-CXCR4 upregulation, identifying a biomarker with the potential to identify optimal patients for CXCR4 inhibition. P in combination with chemo may thus prove useful in the treatment of high-risk pediatric ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6172-6181 ◽  
Author(s):  
Kathleen Cullion ◽  
Kyle M. Draheim ◽  
Nicole Hermance ◽  
Jennifer Tammam ◽  
Vishva M. Sharma ◽  
...  

Abstract Mutations in NOTCH1 are frequently detected in patients with T-cell acute lymphoblastic leukemia (T-ALL) and in mouse T-ALL models. Treatment of mouse or human T-ALL cell lines in vitro with γ-secretase inhibitors (GSIs) results in growth arrest and/or apoptosis. These studies suggest GSIs as potential therapeutic agents in the treatment of T-ALL. To determine whether GSIs have antileukemic activity in vivo, we treated near-end-stage Tal1/Ink4a/Arf+/− leukemic mice with vehicle or with a GSI developed by Merck (MRK-003). We found that GSI treatment significantly extended the survival of leukemic mice compared with vehicle-treated mice. Notch1 target gene expression was repressed and increased numbers of apoptotic cells were observed in the GSI-treated mice, demonstrating that Notch1 inhibition in vivo induces apoptosis. T-ALL cell lines also exhibit PI3K/mTOR pathway activation, indicating that rapamycin may also have therapeutic benefit. When GSIs are administered in combination with rapamycin, mTOR kinase activity is ablated and apoptosis induced. Moreover, GSI and rapamycin treatment inhibits human T-ALL growth and extends survival in a mouse xenograft model. This work supports the idea of targeting NOTCH1 in T-ALL and suggests that inhibition of the mTOR and NOTCH1 pathways may have added efficacy.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2021 ◽  
Author(s):  
Evelyn M. Mrozek ◽  
Vineeta Bajaj ◽  
Yanan Guo ◽  
Izabela Malinowska ◽  
Jianming Zhang ◽  
...  

Inactivating mutations in either TSC1 or TSC2 cause Tuberous Sclerosis Complex, an autosomal dominant disorder, characterized by multi-system tumor and hamartoma development. Mutation and loss of function of TSC1 and/or TSC2 also occur in a variety of sporadic cancers, and rapamycin and related drugs show highly variable treatment benefit in patients with such cancers. The TSC1 and TSC2 proteins function in a complex that inhibits mTORC1, a key regulator of cell growth, which acts to enhance anabolic biosynthetic pathways. In this study, we identified and validated five cancer cell lines with TSC1 or TSC2 mutations and performed a kinase inhibitor drug screen with 197 compounds. The five cell lines were sensitive to several mTOR inhibitors, and cell cycle kinase and HSP90 kinase inhibitors. The IC50 for Torin1 and INK128, both mTOR kinase inhibitors, was significantly increased in three TSC2 null cell lines in which TSC2 expression was restored.  Rapamycin was significantly more effective than either INK128 or ganetespib (an HSP90 inhibitor) in reducing the growth of TSC2 null SNU-398 cells in a xenograft model. Combination ganetespib-rapamycin showed no significant enhancement of growth suppression over rapamycin. Hence, although HSP90 inhibitors show strong inhibition of TSC1/TSC2 null cell line growth in vitro, ganetespib showed little benefit at standard dosage in vivo. In contrast, rapamycin which showed very modest growth inhibition in vitro was the best agent for in vivo treatment, but did not cause tumor regression, only growth delay.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Vol 20 (22) ◽  
pp. 5567
Author(s):  
Jan Torben Schille ◽  
Ingo Nolte ◽  
Eva-Maria Packeiser ◽  
Laura Wiesner ◽  
Jens Ingo Hein ◽  
...  

Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9′s mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4496-4496
Author(s):  
Debabrata Banerjee ◽  
Guray Saydam ◽  
Lata G. Menon ◽  
Giuseppe S.A. Longo ◽  
Daniel Medina ◽  
...  

Abstract Aplidin (dehydrodidemnin B, C57H89N7O15) (APLD) is a novel antitumor agent isolated from the Mediterranean tunicate (seasquirt) Aplidium albicans. APLD has shown impressive in vitro and in vivo activity against different human cancer cells and has recently entered Phase II clinical trials in a variety of solid tumors following promising toxicity and pharmacological properties seen in Phase I studies. Fatigue and muscular pain were the most prevalent toxicities at 5 mg/m2 iv 3 h every other week or 3.4 mg/m2/wk with little or no bone marrow toxicity. APLD inhibits protein synthesis via GTP-dependent elongation factors 1-alpha and ornithine decarboxylase (ODC) activity, induces rapid p53-independent apoptosis in vitro, cell cycle perturbation and alteration of gene expression at early times after treatment. APLD inhibits vascular endothelial growth factor (VEGF) secretion and vascular endothelial growth factor-receptor 1 (VEGF-R1/flt-1), preventing autocrine stimulation in the human lymphoid leukemic cell line MOLT-4 cells and in AML blasts. APLD is a potent inhibitor of human myeloid leukemia cell lines (K-562, HEL and HL60), as well as fresh blast cells obtained from patients with both ALL and AML and is more potent than Idarubicin. Cytototoxic doses effective against multiple myeloma cells and fresh pediatric and adult ALL/AML blasts are achievable in plasma and are well below the recommended dose, thus a positive therapeutic index is anticipated. Moreover, the lack of cross resistance with conventional agents against fresh pediatric and adult AML/ALL blasts except fludarabine and Gemcitabine makes APLD an attractive therapeutic choice. Characterization of gene expression profile is currently underway in an attempt to generate a molecular fingerprint of sensitivity/resistance to APLD that will be validated in phase II clinical studies. Based on in vitro antileukemic effect of APLD as well as early results of clinical trials, a systematic study of drug combinations with Aplidin (APLD), for use possible in hematologic malignancies was undertaken. Three cell lines viz. K562 (acute myeloid leukemia), CCRF-CEM (acute lymphocytic leukemia), and SKI-DLCL (diffuse large cell lymphoma) were used for combination studies. Cytarabine and mitoxantrone were found to be synergistic in combination with APLD in all 3 cell lines as assessed by the Chou-Talalay combination index analysis. Since cytarabine and APLD produced impressive synergistic cell kill in all three cell culture models, the combination was further tested in the CCRF-CEM ALL xenograft model in SCID mice. APLD (0.7 mg/Kg) potentiated the antitumoral effect of cytarabine (50mg/Kg) in vivo. Addition of APLD to cytarabine treatment in xenograft model resulted in greater than 50% reduction in tumor size as compared to the untreated group. T/C ratios indicated that the effect of the combination was maximal at day 5 but was still maintained on day 8 (T/C on day 3 = 0.614; day 5= 0.403 and day 8= 0.703). The preclinical results with APLD in leukemias and lymphomas, as a single agent and in combination with cytarabine provide the basis for implementation of a phase II program in resistant relapsed leukemias and lymphomas.


Sign in / Sign up

Export Citation Format

Share Document