Long-Term Immunological Profile of Patients Treated with Haploidentical HSCT and TK-Cells to Study the Requirements of Memory T Cell Persistence

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4793-4793
Author(s):  
Giacomo Oliveira ◽  
Maria Teresa Lupo Stanghellini ◽  
Eliana Ruggiero ◽  
Nicoletta Cieri ◽  
Mattia D'Agostino ◽  
...  

Abstract BACKGROUND: Suicide gene therapy applied to haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is one of the widest clinical applications of gene therapy. By the infusion of donor lymphocytes transduced to express the Herpes Simplex Virus Thymidine Kinase (TK) suicide gene, patients achieve a rapid immune reconstitution and substantial protection against tumor recurrence. TK-cells are promptly eliminated in case of graft versus host disease (GvHD), with complete resolution of the adverse reaction. In previous studies, we showed that TK-cell infusions are necessary and sufficient to promote the generation of a fast, polyclonal and full competent T cell repertoire. In the present work we characterize the immunological profile of a cohort of long-term survivors after suicide gene therapy and we studied the long-term fate of TK-cells to shed light on memory T cell dynamics after transplantation. RESULTS: We studied 9 adult patients who underwent haplo-HSCT and infusion of purified suicide-gene modified donor T cells (median dose: 1.9x107 cells/kg, range:0.9x106-39.5x106) for high-risk hematologic malignancies between 1995 and 2010 (TK patients). At a median follow-up of 7,4 years (range 3.2-12.3), all patients are in complete remission. Two out of 9 patients (22%) experienced GvHD in the early phase post immune reconstitution; in all cases, ganciclovir (GCV) administration proved effective in abrogating the adverse reaction. No symptoms or complications related to GvHD were observed during the long-term follow up, and none of the patient is receiving immunosuppressive drugs. A complete recovery of NK cells, B lymphocytes and αβ or γδ T cells was observed. The CD8+ and CD4+ T cell compartment of TK patients were characterized by level of naïve and memory cell comparable to age and sex matched healthy controls. The quantification of CD4+ CD31+ CD62L+ CD45RA+ CD95- recent thymic emigrants and measure of single joint T-cell receptor excision circles demonstrated that the normalization of the T cell compartment was supported by a completely recovered thymic output. TK-cells were detected in all patients (100%), at low levels (median=4cells/uL). Ex vivo selection of pure TK-cells after polyclonal stimulation and LNGFR-purification confirmed the presence of functional transduced cells, thus directly demonstrating the ability of memory T cells to persist for years. Of notice TK-cells could be retrieved also in patients successfully treated with GCV for GvHD, thus confirming the selective action of GCV only on proliferating TK-cells. Accordingly, GCV sensitivity was preserved in long-term persisting TK-cells, independently from their differentiation phenotype. TK-cells circulating in patients displayed a memory phenotype comprising effector memory (TEM), central memory (TCM) and stem memory (TSCM) T cells and exhibited a low level of Ki-67 positivity, thus suggesting the maintenance of a pool of gene modified memory cells through homeostatic proliferation. The number of TK-cells circulating at the longest follow-up did not correlate with the number of infused cells, nor patients or donors’ age, but instead with the peak of TK-cells observed within the first months after infusion, suggesting that antigen recognition is dominant in driving in vivo expansion and persistence of memory T cells. We evaluated whether the phenotype of infused TK-cells was able to affect the long-term fate of gene-modified memory T cells. We observed that the number of infused TSCM cells positively correlated with early TK-cell expansion and with their long-term persistence, suggesting that TSCMmight play a privileged role in the generation of a long-lasting immunological memory. CONCLUSION: These data show that a complete and physiological donor-derived immune system is restored in adult surviving long-term after suicide gene therapy. After infusion, gene modified cells persist for up to 12 years in treated patients. This setting can be exploited to investigate the requirements at the basis of the generation of a long-lasting immunological memory in vivo. Further studies on TK-cell TCR repertoire and vector integrations are currently being performed to elucidate the in vivo dynamics of infused memory T cells. Disclosures Lambiase: MolMed S.p.A: Employment. Traversari:MolMed S.p.A: Employment. Bordignon:MolMed S.p.A: Chairman and CEO Other. Bonini:MolMed S.p.A: Consultancy.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 165-165
Author(s):  
Giacomo Oliveira ◽  
Maria Teresa Lupo Stanghellini ◽  
Nicoletta Cieri ◽  
Raffaella Greco ◽  
Maddalena Noviello ◽  
...  

Abstract Background Suicide gene therapy applied to allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the widest clinical applications of gene therapy. By the infusion of donor lymphocytes transduced to express the Herpes Simplex Virus Thymidine Kinase (TK) suicide gene, patients achieve a rapid immune reconstitution and substantial protection against tumor recurrence. TK-cells are promptly eliminated in case of graft versus host disease (GvHD), with complete resolution of the adverse reaction. In previous studies, we showed that TK-cell infusions are necessary and sufficient to promote the generation of a fast, polyclonal and full competent T cell repertoire. In the present work we characterize the immunological profile of a cohort of long-term survivors after suicide gene therapy and we studied the long-term fate of TK-cells to shed light on memory T cell dynamics after transplantation. Results We studied 14 adult patients who underwent allo-HSCT (haploidentical HSCT: n=11; HLA-identical HSCT n=3) and infusion of purified suicide-gene modified donor T cells (median dose: 1.9x107 cells/kg, range:0.9x106-2.8x108) for high-risk hematologic malignancies between 1995 and 2010. At a median follow-up of 8,7 years (range 3-17), all patients are in complete remission. Five out of 14 patients experienced GvHD in the early phase post immune reconstitution; in all cases, ganciclovir administration proved effective in abrogating the adverse reaction. No symptoms or complications related to GvHD were observed during the long-term follow up, and none of the patient is receiving immunosuppressive drugs. We observed a complete recovery of NK cells, comprising of mature (CD56+CD16+) and immature (CD56+CD16-) NK cells. Interestingly the proportion of B cells circulating long-term in patients was significantly higher than that observed in age-related healthy controls (p<0.0001). Full recovery of CD3, including CD4 and CD8 cell counts was observed in this long-term analysis. The youngest patients (age range: 22-34 years) showed naïve and memory frequencies similar to age-matched controls. Conversely, in oldest patients (age range: 44-66 years) the frequency of naïve T cells was inferior to age-matched healthy subjects (p=0.0038), and was compensated by a larger proportion of central memory and effector memory cells. Nevertheless, we observed a high percentage of recent thymic emigrants, suggesting a full recovery of thymic output not only in young but also in old patients. Stem memory CD4 and CD8 T cell counts were similar to that of healthy controls, independently from age. CMV-specific T cells, quantified by dextramer staining, were detected in CMV+ patients. TK-cells were detected in the majority of analyzed patients (90%), at low levels (median=0,43%±6,9%). Ex vivo selection of pure TK-cells after polyclonal stimulation and NGFR-purification confirmed the presence of functional transduced cells, thus directly demonstrating the ability of memory T cells to persist for years. The proportion of TK-cells detectable at the longest follow-up did not correlate with the number of infused cells, nor patients or donors’ age, but instead with the peak of TK-cells observed within the first 3 months after infusion, suggesting that antigen recognition is dominant in driving in vivo expansion and persistence of memory T cells. Of notice TK-cells could be retrieved also in patients successfully treated with ganciclovir for GvHD, thus confirming the selective action of ganciclovir only on proliferating TK-cells. Accordingly, ganciclovir sensitivity was preserved in long-term persisting TK-cells, independently from their differentiation phenotype. While infused TK-cells displayed a predominant effector memory phenotype, gene modified T cells persisting long-term were enriched for central memory (CD45RA-CD62L+) and stem memory (CD45RA+CD62L+CD95+) phenotypes, suggesting the higher ability of these T cell subsets to persist and shape the immunological profile long-term in treated patients. Conclusion These data show that a complete donor-derived immune system is restored in adult surviving long-term after suicide gene therapy. After infusion, gene modified cells persist for up to 14 years in treated patients. Further studies on TK-cell TCR repertoire and vector integrations are currently being performed to elucidate the in vivo dynamics of infused memory T cells. Disclosures: Valtolina: MolMed S.p.A: Employment. Traversari:MolMed S.p.A: Employment. Bordignon:MolMed S.p.A: Employment. Bonini:MolMed S.p.A: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 263-263
Author(s):  
Giacomo Oliveira ◽  
Eliana Ruggiero ◽  
Maria Teresa Lupo Stanghellini ◽  
Nicoletta Cieri ◽  
Mattia D'Agostino ◽  
...  

Abstract BACKGROUND: Long-term T-cell survival is pivotal for the development of effective therapeutic approaches against pathogens and cancer, since the success of immunotherapy requires the generation of a robust, safe but also durable immune response. Even if it is established that memory cells can survive and persist for years, little is known about the requirements for their long-term persistence. Suicide gene therapy after T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) provides a unique model to study memory T cells. In this setting, patients receive the post-transplant infusion of donor-derived gene-modified memory T lymphocytes retrovirally transduced to express the Herpes Simples Virus Thymidine Kinase (TK) suicide gene and the DLNGFR selection marker. The presence of a safety switch allows the infusion into patients of a broad T-cell repertoire in the absence of immune suppression, while the surface marker enables unambiguous detection and close monitoring of gene-modified cells circulating in treated patients. In the present work we characterize the immunological profile of a cohort of long-term survivors after suicide gene therapy and we studied the fate of persisting TK cells to shed light on memory T cell dynamics in vivo and to unravel the requirements for long-term persistence directly in humans. RESULTS: We studied 10 adult patients who underwent haplo-HSCT and infusion of suicide-gene modified donor T cells (median dose: 1.9x107 cells/kg, range:1-39.5x106) for high-risk hematologic malignancies between 1995 and 2012. Three out of 10 patients (33%) experienced GvHD early after HSCT; in all cases, ganciclovir (GCV) administration proved effective in abrogating the adverse reaction. At a median follow-up of 7 years (range 2-14), all patients were in complete remission and free of GvHD, and displayed a complete and broad donor-derived immune system characterized by physiological counts of NK cells, B lymphocytes, γδ T cells and naïve and memory CD4+ or CD8+ T cells. TK cells were detected in all patients, at low levels (median=4cells/uL), even in patients treated with GCV. Ex vivo selection of pure TK-cells confirmed the presence of functional transduced cells, thus directly demonstrating the ability of memory T cells to persist for years. Importantly, GCV sensitivity was preserved in long-term persisting TK cells, independently from their differentiation phenotype. Longitudinal follow up revealed that TK cells circulated in patients at stable levels and displayed a conserved phenotype comprising effector memory (TEM), central memory (TCM) and stem memory (TSCM) T cells. The low level of Ki-67 positivity suggested the maintenance of a pool of gene-modified memory cells through homeostatic proliferation. Polyclonality was demonstrated by sequencing among TK cells of thousands of diverse TCRs with a broad usage of V and J alpha and beta genes. The number of TK cells persisting at the longest follow-up did not correlate with the amount of infused cells, but instead with the peak of TK cells measured within the first months after infusion, suggesting that antigen recognition is dominant in driving in vivo expansion and persistence of memory T cells. Accordingly, we documented the persistence of CMV and Flu-specific TK cells only after post-transplant CMV reactivation or after Flu infection. Characterization of TK cell products infused to patients showed that the amount of infused TSCM cells positively correlates with early expansion and long-term persistence of gene-marked cells. By combining sorting of memory T-cell subsets with sequencing of integration sites, TCRα and TCRβ clonal markers, we longitudinally traced T-cell clones from infused products to late follow-up time-points. We showed that although T cells retrieved long-term are enriched in clones originally shared in different memory T-cell subsets, dominant long-term clonotypes preferentially originate from infused TSCM clones, suggesting that TSCM might play a privileged role in the generation of a long-lasting immunological memory. CONCLUSION: In a completely restored immune system, suicide gene-modified donor T cells persist for up to 14 years in treated patients. Long-term persistence of memory T cells is determined by antigen exposure, and by the original phenotype of infused cells, according to a hierarchical model in which TSCM are superior to TCM and TEM/EFF. Disclosures Lambiase: MolMed S.p.A: Employment. Traversari:MolMed S.p.A: Employment. Bordignon:MolMed S.p.A: Membership on an entity's Board of Directors or advisory committees. Bonini:MolMed S.p.A: Consultancy.


Blood ◽  
2010 ◽  
Vol 115 (17) ◽  
pp. 3508-3519 ◽  
Author(s):  
John C. Markley ◽  
Michel Sadelain

Abstract The γc-cytokines are critical regulators of immunity and possess both overlapping and distinctive functions. However, comparative studies of their pleiotropic effects on human T cell–mediated tumor rejection are lacking. In a xenogeneic adoptive transfer model, we have compared the therapeutic potency of CD19-specific human primary T cells that constitutively express interleukin-2 (IL-2), IL-7, IL-15, or IL-21. We demonstrate that each cytokine enhanced the eradication of systemic CD19+ B-cell malignancies in nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull mice with markedly different efficacies and through singularly distinct mechanisms. IL-7– and IL-21–transduced T cells were most efficacious in vivo, although their effector functions were not as enhanced as IL-2– and IL-15–transduced T cells. IL-7 best sustained in vitro T-cell accumulation in response to repeated antigenic stimulation, but did not promote long-term T-cell persistence in vivo. Both IL-15 and IL-21 overexpression supported long-term T-cell persistence in treated mice, however, the memory T cells found 100 days after adoptive transfer were phenotypically dissimilar, resembling central memory and effector memory T cells, respectively. These results support the use of γc-cytokines in cancer immunotherapy, and establish that there exists more than 1 human T-cell memory phenotype associated with long-term tumor immunity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 380-380 ◽  
Author(s):  
Stephan A. Grupp ◽  
Shannon L Maude ◽  
Pamela Shaw ◽  
Richard Aplenc ◽  
David M. Barrett ◽  
...  

Abstract BACKGROUND CARs combine a single chain variable fragment (scFv) of an antibody with intracellular signaling domains. We have previously reported on CTL019 cells expressing an anti-CD19 CAR. Infusion of these cells results in 100 to 100,000x in vivo proliferation, durable anti-tumor activity, and prolonged persistence in pts with B cell tumors, including sustained CRs in adults and children with ALL (Grupp et al., NEJM 2013, Maude et al., NEJM 2014). We now report on outcomes and longer follow up of the first 30 pts with relapsed, refractory ALL treated on our pilot trial in pediatric ALL. METHODS T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3ζ, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into children with relapsed or refractory CD19+ ALL. 26/30 pts received lymphodepleting chemotherapy the week prior to CTL019 infusion. The targeted T cell dose range was 107 to 108 cells/kg with a transduction efficiency of 11-45%. T cells for manufacturing were collected from the pt regardless of prior SCT status, not allo donors. RESULTS 30 children median age 10y (5-22y) with CD19+ ALL were treated. 25/30 pts had detectable disease on the day before CTL019 cell infusion, while 5 were MRD(-). A median of 3.6x106 CTL019 cells/kg (1.1-18x106/kg) were infused over 1-3 days. There were no infusional toxicities >grade 2, although 9 pts developed fevers within 24 hrs of infusion and did not receive a planned 2nd infusion of CTL019 cells. 27 pts (90%) achieved a CR, including a patient with T cell ALL aberrantly expressing CD19+. 3 did not respond. MRD measured by clinical flow cytometry was negative in 23 responding pts and positive at 0.1% (negative at 3 mo), 0.09%, 0.22%, and 1.1% in 4 pts. With median follow up 8 mo (1-26 mo), 16 pts have ongoing CR, with only 3 patients in the cohort receiving subsequent treatment such as donor lymphocyte infusion or SCT, 6-month EFS measured from infusion is 63% (95% CI, 47-84%), and OS is 78% (95% CI, 63-95%). CTL019 cells were detected in the CSF of 17/19 pts and 2 pts with CNS2a disease experienced a CR in CSF. 10 pts with a CR at 1 mo have subsequently relapsed, half with CD19(-) blasts. 2/5 pts who relapsed with CD19(-) disease had previously been refractory to CD19-directed blinatumomab and subsequently went into CR with CTL019. Figure 1 Figure 1. All responding pts developed grade 1-4 cytokine release syndrome (CRS) at peak T cell expansion. Detailed cytokine analysis showed marked increases of IL6 and IFNγ (both up to 1000x), and IL2R. Treatment for CRS was required for hemodynamic or respiratory instability in 37% of patients and was rapidly reversed in all cases with the IL6-receptor antagonist tocilizumab, together with corticosteroids in 5 pts. Although T cells collected from the 21 pts who had relapsed after allo SCT were median 100% donor origin, no GVHD has been seen. Grade 4 CRS was strongly associated with high disease burden prior to infusion and with elevations in IL-6, ferritin (suggesting macrophage activation syndrome) and C reactive protein after infusion. Persistence of CTL019 cells detected by flow cytometry and/or QPCR, and accompanied by B cell aplasia, continued for 1-26 months after infusion in pts with ongoing responses. QPCR showed very high levels of CTL019 proliferation, with all patients achieving peak levels >5000 copies/ug gDNA and 26 patients with peak levels >15,000 copies/ug gDNA. B cell aplasia has been treated with IVIg without significant infectious complications. Probability of 6-mo CTL019 persistence by flow was68% (95% CI, 50-92%) andrelapse-free B cell aplasia was 73% (95% CI, 57-94%). CONCLUSIONS: CTL019 cells can undergo robust in-vivo expansion and can persist for 2 years or longer in pts with relapsed ALL, allowing for the possibility of long-term disease response without subsequent therapy such as SCT. This approach also has promise as a salvage therapy for patients who relapse after allo-SCT with a low risk of GVHD. CTL019 therapy is associated with a significant CRS that responds rapidly to IL-6-targeted anti-cytokine treatment. CTL019 cells can induce potent and durable responses for patients with relapsed/refractory ALL; however, recurrence with cells that have lost CD19 is an important mechanism of CLT019 resistance. CTL019 therapy has received Breakthrough Therapy designation from the FDA in both pediatric and adult ALL, and phase II multicenter trials have been initiated. Disclosures Grupp: Novartis: Consultancy, Research Funding. Barrett:Novartis: Research Funding. Chew:Novartis: Research Funding. Lacey:Novartis: Research Funding. Levine:Novartis: Patents & Royalties, Research Funding. Melenhorst:Novartis: Research Funding. Rheingold:Novartis: Consultancy. Shen:Novartis: Employment. Wood:Novartis Pharma: Employment. Porter:Novartis: managed according to U Penn Policy Patents & Royalties, Research Funding. June:Novartis: Research Funding, Royalty income Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 512-512 ◽  
Author(s):  
Ingrid G Winkler ◽  
Valerie Barbier ◽  
Kristen J Radford ◽  
Julie M Davies ◽  
Jean-Pierre Levesque ◽  
...  

Abstract T-cells are critical mediators of immune defense against pathogens and cancer. Adoptive T cell immunotherapy and T-cell engineering have promising clinical applications but T cell survival and exhaustion are current limitations. Central memory cells (TCM CD62L+ CCR7+) and their precursors, stem central memory T-cells (TSCM) possess the stem-like properties needed to reconstitute and prolong an effective immune response long-term. These cells have been shown to significantly improve therapeutic efficacy of adoptive T-cell therapy. The challenge remains to harvest good quality TCM-cells for these immunotherapy approaches. The bone marrow (BM) is the major reservoir of CD8+ TCM and their precursors. We have previously shown that E-selectin is expressed in the BM vasculature and drives activation and differentiation of hematopoietic stem cells during G-CSF induced mobilization to the blood. We find therapeutic blockade of E-selectin promotes HSC self-renewal and reconstitution in vivo. We now examine the impact of E-selectin blockade on CD8+ T cell mobilization from the bone marrow to the blood and hypothesize that E-selectin blockade may also dampen the activation/differentiation of this subset. First we administered a standard G-CSF regime (filgastim 250ug/kg/day for 3 days) to mice and then dosed some cohorts with GMI-1271 (40mg/kg BID) from 12 to 72 hours within this 3 day period. Administration of G-CSF alone results in a near complete disappearance of bone marrow resident CD8+ TCM cells, and their apparent migration (increase in numbers) to the blood, while CD8+ subsets in the lymph nodes and spleen were barely affected by G-CSF. Furthermore among T-cell subsets, CD8+ but not CD4+ TCM were specifically mobilized into the blood when GMI-1271 was co-administered for the last 12 to 24 hours of G-CSF. These findings are consistent with reports demonstrating the bone marrow to be a major reservoir for CD8+ but not CD4+ central memory T-cells. Administration of GMI-1271 caused a marked enhancement in mobilization into the blood of CD8+ TCM/SCM (CD62Lhi, CCR7+) cells over treatment with G-CSF alone (p<0.05). To determine the functional consequences of this skewed mobilization following GMI-1271 co-administration, 25 uL of mobilized blood was transplanted into irradiated congenic B6.SJL recipients together with 2x105 congenic BM cells to analyze long-term donor T-cell engraftment in the recipient mice. We found G-CSF mobilized donor blood did not contribute CD8+ TCM cells that can persist post-transplant (<0.5% at 20 weeks post-transplant). In contrast when donor mice were mobilized with G-CSF together with E-selectin blockade (GMI-1271), we found elevated levels of donor blood derived CD8+ T-cells demonstrating robust long-term CD8+ T-cell persistence / regeneration (5.3 ±3.2% of total recipient T-cells, p=0.04). This dramatic boost in donor CD8+ T-cell reconstitution in mobilized blood following GMI-1271 co-administration is likely to be due to the long-term persistence and in vivo amplification of CD8+ TCM cells from donor mobilized blood. Similar in vivo enhancing effects of GMI-1271 were also observed with other mobilizing agents such as combined CXCR4 and VLA-4 blockade and GM-CSF resulting in a significant 4.9-fold boost in donor CD8+ reconstitution with GMI-1271. Importantly, only 12 hours of E-selectin blockade was sufficient to achieve this boost in CD8+ TCM numbers in the blood following G-CSF. In a previous report we have shown that therapeutic blockade of E-selectin promotes HSC self-renewal in vivo. Thus, it is possible that E-selectin blockade boosts mobilization of CD8+ TCM/SCM with stem-like properties into the blood by loosening factors retaining CD8+ TCM/SCM in the bone marrow and/or blocking the E-selectin-mediated activation and differentiation of this T-cell subset. In summary, our studies identify E-selectin blockade as a novel target to improve harvesting of CD8+ TCM/SCM cells with stem-like properties. Blockade of this target with GMI-1271 significantly improves the in vivo reconstitution potential and regenerative properties of CD8+ T-cells from donor blood allowing a valuable source of desired T-cells for use in adoptive immunotherapy and T-cell engineering. Disclosures Winkler: GlycoMimetics Inc: Research Funding. Barbier:GlycoMimetics Inc: Research Funding. Davies:GlycoMimetics Inc: Research Funding. Smith:GlycoMimetics, Inc.: Employment. Fogler:GlycoMimetics, Inc.: Employment. Magnani:GlycoMimetics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2934-2934
Author(s):  
Alessandra Magnani ◽  
Michaela Semeraro ◽  
Frédéric ADAM ◽  
Claire Booth ◽  
Loic Dupre ◽  
...  

Abstract Wiskott Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency associated with thrombocytopenia, eczema, infectious, autoimmune complications, and lymphomas. Patients lacking an HLA-matched donor may benefit from an alternative therapeutic approach based on the infusion of autologous gene corrected CD34+ cells. We previously reported a non-randomised, open-label, phase 1/2 clinical study applying a lentiviral vector based gene therapy (GT) protocol in 7 paediatric patients with severe WAS (score ≥ 3/5) (S. Hacein-Bey Abina et al, JAMA 2015). One patient died 7 months after GT because of pre-existing severe opportunistic infections, as reported. Two additional patients have been treated since that initial report, with a follow-up of at least 4 years. We here present a comprehensive long-term study on 8 patients with a follow-up from 4 to 9 years (median 7.6). The safety and efficacy of the approach is thoroughly investigated, with a particular focus on the correction of thrombocytopenia and auto-immunity. A stable engraftment of genetically and functionally corrected lymphoid and myeloid cells was reached in all patients, with no serious treatment-associated adverse events or concerning clonal expansion. Corrected lymphoid cells displayed a selective advantage over time with increasing vector copy number (VCN) level. In turn, this led to (i) sustained expression of WAS protein (WASp) in the patients' cells and (ii) clinical resolution of severe eczema and susceptibility to recurrent infections. In line with these results, T-cell function was restored after GT, as shown by the recovery of immune synapse assembly and the normalization of naïve T cell numbers. The T-cell compartment was also reconstituted in the patient treated at the age of 30 years, suggesting that GT for WAS is a treatment option in adult patients. In parallel with the robustness of T-cell reconstitution a normalized B-cell compartment was observed after GT, as shown in particular by increasing levels of WASp + switched memory B cells over time and the age-matched levels of KRECs. Five patients out of 8 were able to discontinue Ig replacement therapy while achieving normal post-vaccination antibody titers. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. After GT, a few autoimmune manifestations were observed: the persistence of lower extremity vasculitis (P2, very severe prior to GT), the new occurrence of nephrotic syndrome (P9), and the presence of anti-platelet antibodies (P2, P4, P7). The levels of circulating autoantibodies detected before GT (including ANA and vasculitis-related autoantibodies) normalized after treatment. Following GT, platelets were found to express sub-normal levels of WASp and to only partially augment their size. Platelet function studies indicated a partial correction of the platelet compartment achieved by GT, which may be sufficient to prevent occurrence of the hemorrhagic symptoms typical of WAS. Our results suggest that lentiviral GT provides sustained clinical benefits for patients with WAS. Overall clinical remission was observed in our patients despite very severe disease scores before GT. More efficacious and more reliable transduction protocols and conditioning regimen are likely to further improve outcomes, particularly with regard to platelet recovery, where the advantages of intrinsic correction are less apparent. Disclosures Booth: Orchard Therapeutics: Consultancy, Honoraria; SOBI: Consultancy, Honoraria; Takeda: Honoraria; GSK: Honoraria; Rocket Pharmaceuticals, Inc.: Consultancy. Thrasher: Orchard Therapeutics: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Generation bio: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; 4Bio Capital: Consultancy, Membership on an entity's Board of Directors or advisory committees; Rocket Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees. Cavazzana: Smart Immune: Other: co-founder.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 67-67 ◽  
Author(s):  
Stephan A Grupp ◽  
Noelle V. Frey ◽  
Richard Aplenc ◽  
David M Barrett ◽  
Anne Chew ◽  
...  

Abstract Background CARs combine a single chain variable fragment (scFv) of an antibody with intracellular signaling domains into a single chimeric protein. We previously reported on CTL019 cells expressing a CAR with intracellular activation plus costimulatory domains. Infusion of these cells results in 100 to 100,000x in vivo proliferation, durable anti-tumor activity, and prolonged persistence in pts with B cell tumors, including 1 sustained CR in a patient with ALL (Grupp, et al. NEJM 2013). We now report on outcomes and longer follow up from our pilot studies treating 20 pts (16 children and 4 adults) with relapsed, refractory ALL. Methods T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3ζ, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into pts with relapsed or refractory CD19+ ALL. 17/20 pts received lymphodepleting chemotherapy the week prior to CTL019 infusion. The targeted T cell dose range was 107 to 108 cells/kg with a transduction efficiency (TE) of 11-45%. On the adult protocol, the target dose was 5 x 109 total cells split over 3 days with a TE of 6-31%. 11 pts had relapsed ALL after a prior allogeneic SCT. T cells were collected from the pt, regardless of prior SCT status, and not from allo donors. All pts s/p allo SCT had to be 6 mos s/p SCT with no GVHD or GVHD treatment. Results 16 children median age 9.5 y (5-22y) and 4 adults median age 50y (26-60y) with CD19+ ALL were treated. One child had T cell ALL aberrantly expressing CD19. 14/16 pediatric pts had active disease or +MRD after chemotherapy on the day prior to CTL019 cell infusion, while 2 were MRD(-). 3 of 4 adults had active disease prior to lymphodepleting chemotherapy, while 1 was in morphologic CR. Lymphodepleting chemotherapy varied with most receiving a Cytoxan-containing regimen the week prior to CTL019. A median of 3.7x106 CTL019 cells/kg (0.7-18x106/kg) were infused over 1-3 days. There were no infusional toxicities >grade 2, although 5 pts developed fevers within 24 hrs of infusion and did not receive planned subsequent infusions of CTL019 cells. 14 patients (82%) achieved a CR, including the patient with CD19+ T ALL, 3 did not respond, and 3 are pending evaluation. 11/17 evaluable pts have ongoing BM CR with median follow up 2.6 mo (1.2-15 mo). Three patients with a CR at 1 month have subsequently relapsed, 1 with CD19(-) disease. Median follow-up as of August 1, 2013 was 2.6 mo (1-15 mo) for all pts. All responding pts developed some degree of delayed cytokine release syndrome (CRS), concurrent with peak T cell expansion, manifested by fever, with variable degrees of myalgias, nausea, anorexia. Some experienced transient hypotension and hypoxia. Detailed cytokine analysis showed marked increases from baseline values of IL6 and IFNγ (both up to 1000x), and IL2R, with mild or no significant elevation in systemic levels of TNFα or IL2. Treatment for CRS was required for hemodynamic or respiratory instability in 7/20 patients and was rapidly reversed in all cases with the IL6-receptor antagonist tocilizumab (7 pts), together with corticosteroids in 4 pts. Although T cells collected from the 11 pts who had relapsed after allo SCT were generally 100% of donor origin, no GVHD has been seen. Persistence of CTL019 cells detected by flow cytometry and/or QPCR in pts with ongoing responses continued for 1-15 months after infusion, resulting in complete B cell aplasia during the period of CTL019 persistence. Pts have been treated with IVIg without any unusual infectious complications. One child who entered a CR subsequently developed MDS with a new trisomy 8 in ALL remission and has gone to SCT, and 1 child developed a single leukemia cutis lesion at 6 mo, still BM MRD(-). Conclusions CTL019 cells are T cells genetically engineered to express an anti-CD19 scFv coupled to CD3ζ signaling and 4-1BB costimulatory domains. These cells can undergo robust in-vivo expansion and can persist for 15 mo or longer in pts with relapsed ALL. CTL019 therapy is associated with a significant CRS that responds rapidly to IL-6-targeted anti-cytokine treatment. This approach has promise as a salvage therapy for patients who relapse after allo-SCT, and collection of tolerized cells from the recipient appears to have a low risk of GVHD. CTL019 cells can induce potent and durable responses for patients with relapsed/refractory ALL. Multicenter trials are being developed to test this therapy for ALL in the phase 2 setting. Disclosures: Grupp: Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. Litchman:Novartis Phamaceuticals: Employment, Equity Ownership. Rheingold:Novartis: Research Funding. Shen:Novartis Pharmaceuticals: Employment, Equity Ownership. Wood:Novartis Pharmaceuticals: Employment, Equity Ownership. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3121-3121
Author(s):  
Jae H. Park ◽  
Raymond Yeh ◽  
Isabelle Riviere ◽  
Michel Sadelain ◽  
Renier Brentjens

Abstract Abstract 3121 Cellular therapies through allogeneic hematopoietic stem cell transplants (allo-HSCT) and infusion of genetically modified T cells targeted against tumor associated antigens hold great promise for cancer therapy. However, significant risk of graft-versus-host-disease (GvHD) with allo-HSCT and potential toxicities from the transgene products in the case of genetically modified T cells have generated considerable interest in developing safeguards in the form of suicide genes to allow for the efficient in vivo abrogation of infused T cells in case of unanticipated adverse events. We have previously reported the comparable in vitro function of 3 different suicide gene-prodrug combinations (Park et al. ASH 2010 abstract #3771). The three suicide genes examined included herpes simplex virus thymidine kinase (HSV-TK SR39) with the prodrug ganciclovir, inducible caspase 9 (iCasp9) with the chemical inducer of dimerization (CID), and a novel suicide gene nitroreductase (NTR) derived from E.coli combined with the prodrug metronidazole. Here, we report the comparison of in vivo efficacy of these 3 suicide gene-prodrug combinations using our previously published mouse GvHD model (Santos et al. Nat Med 2009). SCID-Beige mice were injected i.v. with 1×106 FACS-sorted major histocompatibility complex mismatched C57/BL6 T cells transduced to express each suicide gene (HSV-TK SR39, iCasp9 or NTR) cloned in frame with external Gaussia Luciferase (extGLuc), separated by the 2A peptide in an SFG-based vector. Seven days after intravenous injection of modified T cells, SCID-Beige mice developed GvHD as evidenced by in vivo expansion of the transferred T cells detected by bioluminescent imaging (BLI) after a bolus injection of coelenterazine. Subsequently, the mice injected with the HSV-TK SR39-transduced T cells were treated intraperitoneally (i.p.) twice daily for 5 days with ganciclovir at 25mg/kg; the mice with the NTR-transduced T cells were treated i.p. three times daily for 5 days with metronidazole at 200μg; the mice with the iCasp9-transduced T cells were treated i.p. daily for 3 days with CID at 50μg; and the mice with the HSV-TK SR39-transduced T cells treated i.p. twice daily for 5 days with normal saline served as a control group. All treated mice were imaged by BLI on days 3, 7, 11, 18, 25, 32, and weekly thereafter for a total of 3 months following the first dose of each prodrug. All of the control mice treated with normal saline developed rapidly progressing GvHD both clinically and by BLI, meeting the criteria for euthanasia by day 18. In contrast, the administration of prodrugs successfully eradicated the modified T cells expressing respective suicide genes by day 3 and no evidence of GvHD was detected. However, a long-term follow-up of these mice revealed the re-expansion of the transferred T cells or relapse of GvHD in all mice in the NTR group (by day 39) and in 2 out of 3 mice in the HSV-TK SR39 group (by day 53), but none in the mice in the iCasp9 group. The relapsed mice in the NTR and HSV-TK SR groups were treated again with the prodrugs, but none responded to the re-treatment. At the end of the 3 month follow-up, all mice in the NTR group and 2 out of 3 mice from the HSV-TK SR39 group died from progressive GvHD, while all of the mice in the iCasp9 group survived with no evidence of GvHD. In conclusion, our results suggest that the long-term safety and efficacy data of iCasp9, together with its lack of immunogenicity and the absence of reported side effects of CID (Di Stasi et al. ASH 2010 abstract #559), might be advantageous as a promising suicide gene-based strategy in ensuring the rapid and sustained eradication of the adoptively transferred T cells in case of unanticipated severe toxicities of cellular therapies. Based on this in vivo data, we are planning to incorporate the iCasp9 suicide gene in our future clinical trials with T cells genetically modified to express a chimeric antigen receptor targeted against a tumor specific antigen. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document