A Stress-Responsive Transcriptional Factor NRF2 Activates Hematopoietic Stem Cells

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2351-2351
Author(s):  
Murakami Shohei ◽  
Masayuki Yamamoto ◽  
Hozumi Motohashi

Abstract KEAP1-NRF2 system is a major regulator of cellular redox balance and xenobiotic metabolism. NRF2 is an inducible transcription factor, and KEAP1 is its negative regulator. Under normal conditions, NRF2 is poly-ubiquitinated by KEAP1-CUL3 complex and is degraded through proteasome. KEAP1 is a stress sensor and is inactivated by oxidative stress and metabolites of xenobiotics, which results in relief of NRF2 from the KEAP1-mediated suppression and thereby induces cytoprotective genes. In addition to this cytoprotective function of KEAP1-NRF2 system, emerging evidence suggests that their roles extend to cell proliferation and differentiation. Hematopoietic stem cells (HSCs) are maintained quiescent under normal conditions, and are stimulated to proliferate and differentiate in response to environmental alterations. However, the underlying mechanisms of driving HSCs from quiescence into proliferation are still elusive. Here, we investigated whether the KEAP1-NRF2 system contributes to the stress-responsive proliferation of HSCs. In this study, we analyzed long-term HSCs (LT-HSCs), defined as Lin- Sca-1+ c-Kit+ (LSK) CD48- CD150+ cells, which possess high bone marrow (BM) reconstitution capacity. Short-term HSCs (ST-HSCs) and multipotent progenitor (MPP) cells were also defined as LSK CD48- CD150- and LSK CD48+ CD150- cells, respectively. First, we examined Keap1 conditional knockout mice, Keap1F/F::Mx1-Cre (Keap1 CKO1), and compared to control mice, Keap1F/+ or Keap1F/+::Mx1-Cre. In the Keap1 CKO1 mice, ST-HSCs and MPPs were increased, whereas LT-HSCs were not changed in comparison to control mice. However, Keap1-deficient LT-HSCs exhibited less engraftment and reconstitution in the competitive bone marrow transplantation (BMT) assay, in which donor-derived LT-HSCs were transplanted with BM competitor cells (Fig. 1). In particular, the Keap1-deficient LT-HSCs were almost completely lost after secondary BMT. Importantly, the attenuated reconstitution capacity of LT-HSCs in the absence of Keap1 was clearly recovered by the additional Nrf2 deletion (Fig. 1), which indicates that constitutive activation of NRF2 causes dysfunction of LT-HSCs. To elucidate the cause of the functional impairment in Keap1-deficient LT-HSCs, we examined homing potentials and apoptosis. However, there were no significant differences in either of the parameters. Next, we evaluated cell cycle status of LT-HSCs and found that Keap1-deficient LT-HSCs contained less quiescent cells, compared to control cells (G0 phase; Control = 63.6 ± 3.5%, Keap1 CKO1 = 55.2 ± 4.0%). This implies that Nrf2 activation enhances cell cycle entry of quiescent HSCs, which attenuates the stem cell activity. All these results observed in Keap1 CKO mice were reproduced in another Keap1 conditional knockout mice, Keap1F/F::Vav1-Cre (Keap1 CKO2). Of note, the reduction of quiescent LT-HSCs was nicely recovered by the additional Nrf2 deletion under the Keap1 CKO2 background (Fig. 2, G0 phase; Control2 = 55.1 ± 5.9%, Keap1 CKO2 = 43.0 ± 3.8%, Keap1 CKO2::Nrf2-/- = 65.3 ± 3.7%). These results show that NRF2 activation drives quiescent HSCs into cell cycling. Since NRF2 exerts its activity in response to exogenous stimuli, we assessed whether the NRF2-mediated proliferation of LT-HSCs are induced by transient treatment with an NRF2 inducer, CDDO-Im. CDDO-Im treatment promoted cell cycling of LT-HSCs, which was ablated by Nrf2 deficiency, suggesting that NRF2 activation, even transiently, leads to cell cycle entry of quiescent HSCs. Finally, in order to elucidate contribution of NRF2 to LT-HSCs under steady-state conditions, we assessed Nrf2-deficient (Nrf2-/-) mice. No differences were observed in the BM of Nrf2-/- mice, but after the competitive BMT of LT-HSCs, Nrf2-deficient LT-HSCs exhibited less contribution to the BM reconstitution in the recipients. However, it is noteworthy that the rate of engrafted donor cells tends to be higher in the recipients transplanted with Nrf2-deficient LT-HSCs than in the recipients transplanted with wild-type cells after the secondary BMT, implying that NRF2, at least in part, contributes to cell cycle entry of LT-HSCs under steady-state conditions and thereby Nrf2 deficiency prevents LT-HSCs from proliferation-induced exhaustion. These results show that KEAP1-NRF2 system plays an important role in the stress-responsive proliferation and differentiation of quiescent HSCs. Disclosures No relevant conflicts of interest to declare.

2017 ◽  
Vol 37 (19) ◽  
Author(s):  
Shohei Murakami ◽  
Takuma Suzuki ◽  
Hideo Harigae ◽  
Paul-Henri Romeo ◽  
Masayuki Yamamoto ◽  
...  

ABSTRACT Tissue stem cells are maintained in quiescence under physiological conditions but proliferate and differentiate to replenish mature cells under stressed conditions. The KEAP1-NRF2 system plays an essential role in stress response and cytoprotection against redox disturbance. To clarify the role of the KEAP1-NRF2 system in tissue stem cells, we focused on hematopoiesis in this study and used Keap1-deficient mice to examine the effects of persistent activation of NRF2 on long-term hematopoietic stem cells (LT-HSCs). We found that persistent activation of NRF2 due to Keap1 deficiency did not change the number of LT-HSCs but reduced their quiescence in steady-state hematopoiesis. During hematopoietic regeneration after bone marrow (BM) transplantation, persistent activation of NRF2 reduced the BM reconstitution capacity of LT-HSCs, suggesting that NRF2 reduces the quiescence of LT-HSCs and promotes their differentiation, leading to eventual exhaustion. Transient activation of NRF2 by an electrophilic reagent also promotes the entry of LT-HSCs into the cell cycle. Taken together, our findings show that NRF2 drives the cell cycle entry and differentiation of LT-HSCs at the expense of their quiescence and maintenance, an effect that appears to be beneficial for prompt recovery from blood loss. We propose that the appropriate control of NRF2 activity by KEAP1 is essential for maintaining HSCs and guarantees their stress-induced regenerative response.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4474-4482 ◽  
Author(s):  
Hideaki Nakajima ◽  
Miyuki Ito ◽  
David S. Smookler ◽  
Fumi Shibata ◽  
Yumi Fukuchi ◽  
...  

Regulating transition of hematopoietic stem cells (HSCs) between quiescent and cycling states is critical for maintaining homeostasis of blood cell production. The cycling states of HSCs are regulated by the extracellular factors such as cytokines and extracellular matrix; however, the molecular circuitry for such regulation remains elusive. Here we show that tissue inhibitor of metalloproteinase-3 (TIMP-3), an endogenous regulator of metalloproteinases, stimulates HSC proliferation by recruiting quiescent HSCs into the cell cycle. Myelosuppression induced TIMP-3 in the bone marrow before hematopoietic recovery. Interestingly, TIMP-3 enhanced proliferation of HSCs and promoted expansion of multipotent progenitors, which was achieved by stimulating cell-cycle entry of quiescent HSCs without compensating their long-term repopulating activity. Surprisingly, this effect did not require metalloproteinase inhibitory activity of TIMP-3 and was possibly mediated through a direct inhibition of angiopoietin-1 signaling, a critical mediator for HSC quiescence. Furthermore, bone marrow recovery from myelosuppression was accelerated by over-expression of TIMP-3, and in turn, impaired in TIMP-3–deficient animals. These results suggest that TIMP-3 may act as a molecular cue in response to myelosuppression for recruiting dormant HSCs into active cell cycle and may be clinically useful for facilitating hematopoietic recovery after chemotherapy or ex vivo expansion of HSCs.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 861-861 ◽  
Author(s):  
Viktor Janzen ◽  
Heather E. Fleming ◽  
Michael T. Waring ◽  
Craig D. Milne ◽  
David T. Scadden

Abstract The processes of cell cycle control, differentiation and apoptosis are closely intertwined in controlling cell fate during development and in adult homeostasis. Molecular pathways connecting these events in stem cells are poorly defined and we were particularly interested in the cysteine-aspartic acid protease, Caspase-3, an ‘executioner’ caspase also implicated in the regulation of the cyclin dependent kinase inhibitors, p21Cip1 and p27Kip1. These latter proteins are known to participate in primitive hematopoietic cell cycling and self-renewal. We demonstrated high levels of Caspase-3 mRNA and protein in immunophenotypically defined mouse hematopoietic stem cells (HSC). Using mice engineered to be deficient in Caspase-3, we observed a consistent reduction of lymphocytes in peripheral blood counts and a slight reduction in bone marrow cellularity. Notably, knockout animals had an increase in the stem cell enriched Lin−cKit+Sca1+Flk2low (LKSFlk2lo) cell fraction. The apoptotic rates of LKS cells under homeostatic conditions as assayed by the Annexin V assay were not significantly different from controls. However, in-vitro analysis of sorted LKS cells revealed a reduced sensitivity to apoptotic cell death in absence of Caspase-3 under conditions of stress (cytokine withdrawal or gamma irradiation). Primitive hematopoietic cells displayed a higher proliferation rate as demonstrated by BrdU incorporation and a significant reduction in the percentage of cells in the quiescent stage of the cell cycle assessed by the Pyronin-Y/Hoechst staining. Upon transplantation, Caspase-3−/− stem cells demonstrated marked differentiation abnormalities with significantly reduced ability to differentiate into multiple hematopoietic lineages while maintaining an increased number of primitive cells. In a competitive bone marrow transplant using congenic mouse stains Capase-3 deficient HSC out-competed WT cells at the stem cell level, while giving rise to comparable number of peripheral blood cells as the WT controls. Transplant of WT BM cells into Caspase-3 deficient mice revealed no difference in reconstitution ability, suggesting negligible effect of the Caspase-3−/− niche microenvironment to stem cell function. These data indicate that Caspase-3 is involved in the regulation of differentiation and proliferation of HSC as a cell autonomous process. The molecular bases for these effects remain to be determined, but the multi-faceted nature of the changes seen suggest that Caspase-3 is central to multiple regulatory pathways in the stem cell compartment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1505-1505
Author(s):  
Wendy W. Pang ◽  
Elizabeth A. Price ◽  
Irving L. Weissman ◽  
Stanley L. Schrier

Abstract Abstract 1505 Poster Board I-528 Aging of the human hematopoietic system is associated with an increase in the development of anemia, myeloid malignancies, and decreased adaptive immune function. While the hematopoietic stem cell (HSC) population in mouse has been shown to change both quantitatively as well as functionally with age, age-associated alterations in the human HSC and progenitor cell populations have not been characterized. In order to elucidate the properties of an aged human hematopoietic system that may predispose to age-associated hematopoietic dysfunction, we evaluated and compared HSC and other hematopoietic progenitor populations prospectively isolated via fluorescence activated cell sorting (FACS) from 10 healthy young (20-35 years of age) and 8 healthy elderly (65+ years of age) human bone marrow samples. Bone marrow was obtained from hematologically normal young and old volunteers, under a protocol approved by the Stanford Institutional Review Board. We determined by flow cytometry the distribution frequencies and cell cycle status of HSC and progenitor populations. We also analyzed the in vitro function and generated gene expression profiles of the sorted HSC and progenitor populations. We found that bone marrow samples obtained from normal elderly adults contain ∼2-3 times the frequency of immunophenotypic HSC (Lin-CD34+CD38-CD90+) compared to bone marrow obtained from normal young adults (p < 0.02). Furthermore, upon evaluation of cell cycle status using RNA (Pyronin-Y) and DNA (Hoechst 33342) dyes, we observed that a greater percentage of HSC from young bone marrow are in the quiescent G0- phase of the cell cycle compared to elderly HSC, of which there is a greater percentage in G1-, S-, G2-, or M-phases of the cell cycle (2.5-fold difference; p < 0.03). In contrast to the increase in HSC frequency, we did not detect any significant differences in the frequency of the earliest immunophenotypic common myeloid progenitors (CMP; Lin-CD34+CD38+CD123+CD45RA-), granulocyte-macrophage progenitors (GMP; Lin-CD34+CD38+CD123+CD45RA+), and megakaryocytic-erythroid progenitors (MEP; Lin-CD34+CD38+CD123-CD45RA-) from young and elderly bone marrow. We next analyzed the ability of young and elderly HSC to differentiate into myeloid and lymphoid lineages in vitro. We found that elderly HSC exhibit diminished capacity to differentiate into lymphoid B-lineage cells in the AC6.21 culture environment. We did not, however, observe significant differences in the ability of young and elderly HSC to form myeloid and erythroid colonies in methylcellulose culture, indicating that myelo-erythroid differentiation capacity is preserved in elderly HSC. Correspondingly, gene expression profiling of young and elderly human HSC indicate that elderly HSC have up-regulation of genes that specify myelo-erythroid fate and function and down-regulation of genes associated with lymphopoiesis. Additionally, elderly HSC exhibit increased levels of transcripts associated with transcription, active cell-cycle, cell growth and proliferation, and cell death. These data suggest that hematopoietic aging is associated with intrinsic changes in the gene expression of human HSC that reflect the quantitative and functional alterations of HSC seen in elderly bone marrow. In aged individuals, HSC are more numerous and, as a population, are more myeloid biased than young HSC, which are more balanced in lymphoid and myeloid potential. We are currently investigating the causes of and mechanisms behind these highly specific age-associated changes in human HSC. Disclosures: Weissman: Amgen: Equity Ownership; Cellerant Inc.: ; Stem Cells Inc.: ; U.S. Patent Application 11/528,890 entitled “Methods for Diagnosing and Evaluating Treatment of Blood Disorders.”: Patents & Royalties.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1478-1478
Author(s):  
Kathryn M. Shinnick ◽  
Kelly A. Barry ◽  
Elizabeth A. Eklund ◽  
Thomas J. McGarry

Abstract Abstract 1478 Poster Board I-501 Hematopoietic stem cells supply the circulation with mature blood cells throughout life. Progenitor cell division and differentiation must be carefully balanced in order to supply the proper numbers and proportions of mature cells. The mechanisms that control the choice between continued cell division and terminal differentiation are incompletely understood. The unstable regulatory protein Geminin is thought to maintain cells in an undifferentiated state while they proliferate. Geminin is a bi-functional protein. It limits the extent of DNA replication to one round per cell cycle by binding and inhibiting the essential replication factor Cdt1. Loss of Geminin leads to replication abnormalities that activate the DNA replication checkpoint and the Fanconi Anemia (FA) pathway. Geminin also influences patterns of cell differentiation by interacting with Homeobox (Hox) transcription factors and chromatin remodeling proteins. To examine how Geminin affects the proliferation and differentiation of hematopoietic stem cells, we created a mouse strain in which Geminin is deleted from the proliferating cells of the bone marrow. Geminin deletion has profound effects on all three hematopoietic lineages. The production of mature erythrocytes and leukocytes is drastically reduced and the animals become anemic and neutropenic. In contrast, the population of megakaryocytes is dramatically expanded and the animals develop thrombocytosis. Interestingly, the number of c-Kit+ Sca1+ Lin- (KSL) stem cells is maintained, at least in the short term. Myeloid colony forming cells are also preserved, but the colonies that grow are smaller. We conclude that Geminin deletion causes a maturation arrest in some lineages and directs cells down some differentiation pathways at the expense of others. We are now testing how Geminin loss affects cell cycle checkpoint pathways, whether Geminin regulates hematopoietic transcription factors, and whether Geminin deficient cells give rise to leukemias or lymphomas. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2504-2504
Author(s):  
Russell Garrett ◽  
Gerd Bungartz ◽  
Alevtina Domashenko ◽  
Stephen G. Emerson

Abstract Abstract 2504 Poster Board II-481 Polyinosinic:polycytidlyic acid (poly I:C) is a synthetic double-stranded RNA used to mimic viral infections in order to study immune responses and to activate gene deletion in lox-p systems employing a Cre gene responsive to an Mx-1 promoter. Recent observations made by us and others have suggested hematopoietic stem cells, responding to either poly I:C administration or interferon directly, enter cell cycle. Twenty-two hours following a single 100mg intraperitoneal injection of poly I:C into 10-12 week old male C57Bl/6 mice, the mice were injected with a single pulse of BrdU. Two hours later, bone marrow was harvested from legs and stained for Lineage, Sca-1, ckit, CD48, IL7R, and BrdU. In two independent experiments, each with n = 4, 41 and 33% of Lin- Sca-1+ cKit+ (LSK) IL-7R- CD48- cells from poly I:C-treated mice had incorporated BrdU, compared to 7 and 10% in cells from PBS-treated mice. These data support recently published reports. Total bone marrow cellularity was reduced to 45 and 57% in the two experiments, indicating either a rapid death and/or mobilization of marrow cells. Despite this dramatic loss of hematopoietic cells from the bone marrow of poly I:C treated mice, the number of IL-7R- CD48- LSK cells increased 145 and 308% in the two independent experiments. Importantly, the level of Sca-1 expression increased dramatically in the bone marrow of poly I:C-treated mice. Both the percent of Sca-1+ cells and the expression level of Sca-1 on a per cell basis increased after twenty-four hours of poly I:C, with some cells acquiring levels of Sca-1 that are missing from control bone marrow. These data were duplicated in vitro. When total marrow cells were cultured overnight in media containing either PBS or 25mg/mL poly I:C, percent of Sca-1+ cells increased from 23.6 to 43.7%. Within the Sca-1+ fraction of poly I:C-treated cultures, 16.7% had acquired very high levels of Sca-1, compared to only 1.75% in control cultures. Quantitative RT-PCR was employed to measure a greater than 2-fold increase in the amount of Sca-1 mRNA in poly I:C-treated cultures. Whereas the numbers of LSK cells increased in vivo, CD150+/− CD48- IL-7R- Lin- Sca-1- cKit+ myeloid progenitors almost completely disappeared following poly I:C treatment, dropping to 18.59% of control marrow, a reduction that is disproportionately large compared to the overall loss of hematopoietic cells in the marrow. These cells are normally proliferative, with 77.1 and 70.53% accumulating BrdU during the 2-hour pulse in PBS and poly I:C-treated mice, respectively. Interestingly, when Sca-1 is excluded from the analysis, the percent of Lin- IL7R- CD48- cKit+ cells incorporating BrdU decreases following poly I:C treatment, in keeping with interferon's published role as a cell cycle repressor. One possible interpretation of these data is that the increased proliferation of LSK cells noted by us and others is actually the result of Sca-1 acquisition by normally proliferating Sca-1- myeloid progenitors. This new hypothesis is currently being investigated. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1273-1273
Author(s):  
Xuan Zhou ◽  
Jaime Meléndez ◽  
Yuxin Feng ◽  
Richard Lang ◽  
Yi Zheng

Abstract Abstract 1273 The maintenance and differentiation of hematopoietic stem cells (HSC) are critical for blood cell homeostasis, which is tightly regulated by a variety of factors. In spite of extensive investigation of HSC biology, however, the mechanism of regulation of HSC and progenitor cell division, particularly the unique molecular events controlling the mitosis process during HSC differentiation, remains unclear. RhoA GTPase is a critical intracellular signaling nodal that has been implicated in signal transduction from cytokines, chemokines, wnt/notch/shh, and adhesion molecules to impact on cell adhesion, migration, cell cycle progression, survival and gene expression. Recent mouse genetic studies in keratinocytes and embryonic fibroblast cells showed that RhoA is a key regulator of mitosis. By using an interferon-inducible RhoA conditional knockout mouse model (Mx-cre;RhoAlox/lox), we have made the discovery that RhoA plays an indispensible role in primitive hematopoietic progenitor differentiation through the regulation of mitosis and survival. RhoA deficient mice die at ∼10 days because of hematopoietic failure, as evidenced by a loss of bone marrow, splenocyte and PB blood cells. Syngenic as well as reverse transplant experiments demonstrate that these effects are intrinsic to the hematopoietic compartment. RhoA loss results in pancytopenia associated with a rapid exhaustion of the lin−c-kit+ (LK) phenotypic progenitor population (within 4 days after two polyI:C injections). Meanwhile, the lin−c-kit+sca1+ (LSK) primitive cell compartment is transiently increased in BM after RhoA deletion due to a compensatory loss of quiescence and increased cell cycle. Interestingly, we find that within the LSK population, there is a significant accumulation of LSKCD34+Flt2− short-term HSCs (ST-HSC) and a corresponding decrease in frequency of LSKCD34+Flt2+ multipotent progenitors (MPPs). Consistent with these phenotypes, the LK and more differentiated hematopoietic cell populations of RhoA knockout mice show an increased apoptosis while the survival activities of LSK and more primitive compartments of WT and RhoA KO mice remain comparable. These data suggest that RhoA plays an indispensible role in the step of ST-HSCs differentiation to MPP cells, possibly through the regulation of MPP cell survival. This hypothesis is further supported by a competitive transplantation experiment. Deletion of RhoA in a competitive transplantation model causes an extinction of donor derived (CD45.2+) differentiated cells (myeloid, erythroid, T and B cells) in the peripheral blood. Interestingly, bone marrow CD45.2+ LSK cells are only marginally affected by deletion of RhoA and RhoA−/− LSK cells are able to engraft into 2nd recipient, whereas CD45.2+ LK and more differentiated cells are mostly eliminated after RhoA deletion. This effect is associated with a decrease in the survival of CD45.2+ RhoA−/− LK, but not LSK cells. Further in vitro culture of isolated lin− progenitors demonstrates that RhoA deficiency results in a failure of cytokinesis, causing an accumulation of multinucleated cells, further suggesting that RhoA is essential for the cytokinesis of hematopoietic progenitors. Surprisingly, the well-defined Rho downstream target, actomyosin machinery, does not appear to be affected by RhoA knockout. We are further exploring the mechanism of RhoA contribution to the differentiation of HSCs by dissecting the signaling and functional relationship of RhoA regulated survival activity and cell cycle mitosis in early hematopoietic progenitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1249-1249
Author(s):  
Mariusz Z Ratajczak ◽  
Kasia Mierzejewska ◽  
Janina Ratajczak ◽  
Magdalena Kucia

Abstract Abstract 1249 Background. Several phenotypes have been proposed for long-term repopulating hematopoietic stem cells (LT-HSCs) in murine bone marrow (BM). However, evidence from our and other laboratories has accumulated that adult murine tissues contain a population of developmentally early, so-called very small embryonic-like stem cells (VSELs), which we have proposed as playing an important role as precursors of LT-HSCs (Exp. Hematology 2011;39:225, Leukemia 2012;25,1278). As we reported, these cells are kept quiescent in the BM microenvironment by erasure of the somatic imprint in differentially methylated regions (DMRs) of some developmentally crucial, paternally imprinted genes (Igf2-H19, RasGRF1, and p57Kip2), which proper expression is required for proliferation and expansion of pluripotent stem cells (e.g., embryonic stem cells) (Leukemia 2009;23:2042). However, we also demonstrated that these cells may be specified into the hematopoietic lineage in vitro in co-cultures over OP9 stromal cells. Hypothesis. We hypothesized that these very small cells, which can be specified into the hematopoietic lineage ex vivo in an “artificial” OP9 microenvironment, should also be able to become specified into HSPCs in vivo in the normal BM microenvironment in situations of hematopoietic stress that promote the formation of new HSPCs. Experimental strategies. Normal C57Bl6 mice were bled (twice a week, 200 μl/bleeding) for 4 weeks, and by the end of each week were injected with bromodeoxyuridine (BrdU) to label cells that are in the cell cycle. These mice were subsequently sacrificed and BM cells, flushed from BM cavities as well as from crushed/collagenase-treated bones to recover cells associated with endosteal niches, were obtained from both control and bled mice. In these cell suspensions, we measured i) the total number of Sca-1+Lin–CD45+ HSPCs and small Sca-1+Lin–CD45– VSELs by FACS and ii) the number of cycling BrdU+ HSPCs and VSELs. Moreover, by employing RQ-PCR, we measured the expression of genes regulating the early stages of hematopoiesis and imprinted genes that keep VSELs quiescent in the cell cycle. We also tested the ability of VSELs from control and bled mice to differentiate into CD45+ HSPCs in OP9 co-cultures and their ability to reconstitute hematopoiesis in lethally irradiated mice. Salient results. We observed that the number of cycling BrdU+ VSELs increased from ∼1 ± 0.03% (control) to ∼26 ± 4% and ∼32 ± 6% among BM cells derived from flushed and crushed bones, respectively. Furthermore, in comparison with control animals, BM VSELs isolated from mice after chronic bleeding expressed lower levels of pluripotency markers such as Oct-4 and Nanog, upregulated expression of pro-proliferative mRNA whose expression is regulated by paternal imprinting (Igf2, IGF-1R, and RasGRF1), and downregulated expression of mRNA for paternally imprinted, proliferation-inhibiting H19 and p57Kip2genes. At the same time, the number of BM HSPCs increased from ∼17 ± 3% to 35 ± 7% and 1 ± 0.02% to 40 ± 5% in flushed and crushed bone-derived cells, respectively. Most importantly, we observed that VSELs isolated from bled mice highly upregulated the expression of genes involved in early stages of hematopoiesis, including Ikaros, Lmo2, GATA-2, HoxB4, PU.1, Scl and c-myb, and this correlated with their accelerated ability to become specified into CD45+ HSPCs in co-cultures over OP9 stroma. Finally, VSEL-derived CD45+ HSPCs, when isolated from OP9 cultures, grew methylocelulose colonies from all major hematopoietic lineages and were able to reconstitute hematopoiesis in lethally irradiated recipients. Conclusions. Our data, obtained in an in vivo murine model of hematopoietic stress from chronic bleeding, strongly support the notion that developmentally early murine Sca-1+Lin–CD45– VSELs represent a population of quiescent stem cells in BM that become specified into the hematopoietic lineage in vivo. We propose that, in order to establish the relationship of these cells to other LT-HSC phenotypes described in BM as well as to construct a complete developmental hierarchy, their hematopoietic potential should be compared side-by-side with other BM-derived stem cells isolated using different phenotypic criteria. Disclosures: Ratajczak: Neostem Inc: Member of SAB Other.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2308-2308
Author(s):  
Laura R Goldberg ◽  
Mark S Dooner ◽  
Mandy Pereira ◽  
Michael DelTatto ◽  
Elaine Papa ◽  
...  

Abstract Abstract 2308 Hematopoietic stem cell biologists have amassed a tremendous depth of knowledge about the biology of the marrow stem cell over the past few decades, facilitating invaluable basic scientific and translational advances in the field. Most of the studies to date have focused on highly purified populations of marrow cells, with emphasis placed on the need to isolate increasingly restricted subsets of marrow cells within the larger population of resident bone marrow cells in order to get an accurate picture of the true stem cell phenotype. Such studies have led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to homogeneity. However, work from our laboratory, focusing on the stem cell potential in un-separated whole bone marrow (WBM), supports an alternate view of marrow stem cell biology in which a large population of marrow stem cells are actively cycling, continually changing phenotype with cell cycle transit, and therefore, cannot be purified to homogeneity. Our studies separating WBM into cell cycle-specific fractions using Hoechst 33342/Pyronin Y or exposing WBM to tritiated thymidine suicide followed by competitive engraftment into lethally irradiated mice revealed that over 50% of the long-term multi-lineage engraftment potential in un-separated marrow was due to cells in S/G2/M. This is in stark contrast to studies showing that highly purified stem cell populations such as LT-HSC (Lineage–c-kit+sca-1+flk2−) engraft predominantly when in G0. Additionally, by performing standard isolation of a highly purified population of stem cells, SLAM cells (Lineage–c-kit+sca-1+flk2−CD150+CD41−CD48−), and testing the engraftment potential of different cellular fractions created and routinely discarded during this purification process, we found that 90% of the potential engraftment capacity in WBM was lost during conventional SLAM cell purification. Incubation of the Lineage-positive and Lineage-negative fractions with tritiated thymidine, a DNA analogue which selectively kills cells traversing S-phase, led to dramatic reductions in long-term multi-lineage engraftment potential found within both cellular fractions (over 95% and 85% reduction, respectively). This indicates that the discarded population of stem cells during antibody-based stem cell purification is composed largely of cycling cells. In sum, these data strongly support that 1) whole bone marrow contains actively cycling stem cells capable of long-term multi-lineage engraftment, 2) these actively cycling marrow stem cells are lost during the standard stem cell purification strategies, and 3) the protean phenotype of actively cycling cells as they transit through cell cycle will render cycling marrow stem cells difficult to purify to homogeneity. Given the loss of a large pool of actively cycling HSC during standard stem cell isolation techniques, these data underscore the need to re-evaluate the total hematopoietic stem cell pool on a population level in addition to a clonal level in order to provide a more comprehensive study of HSC biology. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document