An Interim 4-Year Analysis of Prospective Multicenter Observational Study of PNH-Type Cells in Japanese Patients with Bone Marrow Failure Syndrome (OPTIMA study)

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4781-4781
Author(s):  
Yukari Shirasugi ◽  
Hideyoshi Noji ◽  
Tsutomu Shichishima ◽  
Chiharu Sugimori ◽  
Naoshi Obara ◽  
...  

Abstract Background: Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell disorder caused by the clonal expansion of the phosphatidylinositol glycan class A (PIGA) mutant hematopoietic stem cells, which results in a deficiency in glycosylphosphatidylinositol-anchored proteins (GPI-APs). Through the high-resolution flow cytometry-based method, GPI-APs deficient blood cells (i.e., PNH-type cells) are often detectable in patients with bone marrow failure syndromes (BMF), such as aplastic anemia (AA) and low-risk types of myelodysplastic syndromes (MDS). Sugimori et al reported that when BMF patients possessed increased PNH-type cells, the patients had a good prognosis and showed a high response rate to immunosuppressive therapies, suggesting that detection of PNH-type cells is potentially useful in determining an optimal treatment for BMF patients. Thus, we conducted a nationwide, multi-center prospective observational investigation, the OPTIMA study. Methods: From July 2011, we start recruiting the patients with BMF that were diagnosed at various hematology clinics throughout Japan to the OPTIMA study. The primary endpoint of this study was to determine the prevalence of BMF patients with PNH-type cells and to clarify the clinical significance of the presence and quantitative changes of these cells with regard to the clinical features. Six different university laboratories were assigned as regional analyzing centers. The percentage of PNH-type cells was measured by the high-resolution flow cytometry-based method, originally established in Kanazawa University. At six individual laboratories, cross validations were conducted twice a year to minimize the inter-laboratory variations in the detection sensitivities, cutoff values, etc. The liquid FLAER method (≥0.003%) and cocktail method (≥0.005%) with CD55 and CD59 antibodies were used for the detection of PNH-type granulocytes and erythrocytes, respectively. Results Between July 2011 and May 2015, a total of 2328 patients were enrolled to this study, and we analyzed 2212 patients who were eligible for the interim analysis. Of these patients, 74 (3.3%) were diagnosed with PNH, 690 (31.2%) with AA, 592 (26.8%) with MDS, and 856 (38.7%) with undiagnosed BMF. Using high-resolution flow cytometry-based method, 755 (34.1%; 95.9% in PNH, 52.8% in AA, 18.2% in MDS, and 24.8% in undiagnosed BMT) patients had ≥0.005% PNH-type erythrocytes and ≥0.003% PNH-type granulocytes. Overall, 181(8.2%) patients had ≥1% of both PNH-type erythrocytes and granulocytes; the prevalence in each disease subset was 68/74 (91.9%) in PNH, 67/690 (9.7%) in AA, 22/592 (3.7%) in MDS, and 24/856 (2.8%) in undiagnosed BMF. Regarding FAB and WHO classifications of MDS subtype, no patients with RARS (0/22), RAEB-1 (0/37) or RAEB-2 (0/23) had PNH-type cells. In contrast, 20.4% (56/275) patients with RCMD, 18.3% (26/153) patients with RCUD and 50% (2/4) patients with del (5q) MDS possessed increased PNH-type cells. Blood samples from 75 (65 with and 10 without PNH-type cells) patients were analyzed three years after the first examination. Of 65 PNH (+) patients, PNH-type cells disappeared in 4 (6.2%), while the percentage remained stable in 61 (93.8%). All of the 10 PNH (-) at the enrollment were also negative for PNH-type cells in 3 years. Conclusions: A high-resolution flow cytometry-based method that enables the detection of minimal PNH-type cells below 0.01% was successfully transferred from Kanazawa University to other laboratories in Japan. Our interim analysis confirmed previous findings that PNH-type cells were detectable in patients with 52.8% of AA and 18.2% of MDS patients. Regarding FAB and WHO classifications of MDS subtype, PNH-type cells were not detected in any of MDS RARS, RAEB-1 or RAEB-2 patients. Further analysis are required to determine the clinical significance of the minimal level of PNH-type cells as well as chronological changes in the PNH-type cell percentage, especially in terms of their relation to response to immunosuppressive therapy. Disclosures Ninomiya: Alexion Pharmaceuticals: Honoraria. Ando:Eisai Co., Ltd.: Honoraria, Research Funding. Yonemura:1. Chugai Pharma, 2. Alexion Pharma, 3. Japan Blood Products Organization, 4. OHARA Pharma: Research Funding. Kawaguchi:Alexion Pharmaceuticals: Honoraria. Ueda:Alexion Pharma: Research Funding. Nishimura:Alexion Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1241-1241 ◽  
Author(s):  
Naoshi Obara ◽  
Shigeru Chiba ◽  
Kohei Hosokawa ◽  
Chiharu Sugimori ◽  
Masaki Yamamoto ◽  
...  

Abstract Background Paroxysmal nocturnal hemoglobinuria (PNH) is a disease derived from an acquired mutation of the phosphatidylinositol glycan class A (PIGA) gene in the hematopoietic stem cells. In some cases with aplastic anemia (AA) or low-risk types of myelodysplastic syndromes (MDS), it is known that glycosylphosphatidylinositol-anchored protein deficient (PNH-type) cells can be often detected at low frequencies (about 0.01%) through the high-resolution flow cytometry-based methFod. Because these patient groups are reported to have a good reactivity towards immunosuppressive therapies as opposed to the other patient groups lacking PNH-type cells, detection of these cells is potentially useful in determining a treatment plan for the patients with bone marrow failure syndromes. To confirm this preliminary information, a large cohort study is needed. Method A nationwide multi-center prospective observational study (OPTIMA) was started in July 2011 to determine the prevalence of patients with bone marrow failure syndromes who carried PNH-type cells and to clarify the significance of the presence and quantitative changes of these cells with regard to the clinical features. Each of the six laboratories in different universities was assigned as a regional analyzing center. The percentage of PNH-type cells was measured by the high-resolution flow cytometry-based method, originally established in Kanazawa University. At six individual laboratories, cross validations were conducted to minimize the inter-laboratory variations in the detection sensitivities, cutoff values, etc. The liquid FLAER method (≥0.003%) and cocktail method (≥0.005%) with CD55 and CD59 antibodies were used for the detection of PNH-type granulocytes and erythrocytes, respectively. Results Quality of the assay was managed in all the laboratories by periodic blind validation tests using standard blood samples containing 0.01% PNH-type cells. Until July 2013, 1214 cases were examined; 461 (38%) were positive for PNH-type cells and 141 (11.6%) had ≥1% PNH-type cells. Out of 1214, 783 patients were diagnosed to have AA (n=386), MDS (n=341), and PNH (n=56) based on the case report forms. PNH-type cells were detected in 56.2%, 19.1% and 100% of patients with AA, MDS and PNH, respectively. In a half of patients having ≥1% PNH-type cells, lactate dehydrogenase levels exceeded the ≥1.5×upper limits of normal. Conclusion Our study has successfully established the high-resolution flow cytometry-based method that enables the detection of minimal PNH-type cells (below 0.01%). Also, by implementing a uniform protocol to six individual laboratories across the country, a system has been established for the patients to undergo the detection test with equal accuracy in all of these laboratories. Further accumulation of case studies and prolonged observations are required to determine the clinical significance of the minimal PNH-type cells, especially in terms of its relation to response to immunosuppressive therapy. Disclosures: Obara: Alexion Pharmaceuticals: Honoraria. Chiba:Alexion Pharmaceuticals, In: Research Funding. Sugimori:Alexion Pharma: Honoraria. Noji:Alexion Pharmaceuticals: Honoraria. Yonemura:Alexion Pharma: Research Funding. Ando:Alexion Pharma: Research Funding. Kawaguchi:Alexion Pharmaceuticals: Honoraria. Shichishima:Alexion Pharmaceuticals, In: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding. Ninomiya:Alexion Pharma: Honoraria. Nishimura:Alexion Pharma: Research Funding, Speakers Bureau. Kanakura:Alexion Pharmaceuticals: Research Funding, Speakers Bureau. Nakao:Alexion Pharmaceuticals, In: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1595-1595
Author(s):  
Hideyoshi Noji ◽  
Tsutomu Shichishima ◽  
Chiharu Sugimori ◽  
Naoshi Obara ◽  
Kohei Hosokawa ◽  
...  

Abstract [Background] Paroxysmal nocturnal hemoglobinuria (PNH) is a hematopoietic stem cell disorder derived from an acquired mutation of the phosphatidylinositol glycan class A (PIGA) gene in the hematopoietic stem cells which results in the expansion of glycosylphospatidylinositol-anchored protein (GPI-AP)-deficient (PNH-type) hematopoietic cells. PNH-type blood cells are also observed in patients with bone marrow failure (BMF). PNH is conventionally diagnosed when patients have >1% of GPI-AP-deficient erythrocytes and granulocytes determined by flow cytometry. Analyses with high resolution flow cytometry by several different groups have shown that patients with aplastic anemia (AA) or low-risk types of myelodysplastic syndromes (MDS) have small percentages of PNH-type erythrocytes, granulocytes, and/or other lineages of blood cells and that these patients respond better to immunosuppressive therapies compared with BMF patients lacking PNH-type cells. In order to determine the prevalence and clinical significance of PNH-type cells in BMF patients, we conducted a nationwide multi-center prospective observational investigation, the OPTIMA study. [Methods] From July 2011, Japanese patients with PNH, AA, MDS or BMF of uncertain origin have been prospectively enrolled into the study. Six laboratories in different cities in Japan were assigned as regional analyzing centers and measured the percentages of PNH-type cells in the study population as well as collecting clinical and laboratory data. The high-resolution flow cytometry assessments used a liquid fluorescein-labeled proaerolysin (FLAER) method and a cocktail method with anti-CD55 and anti-CD59 antibodies for the detection of PNH-type granulocytes and erythrocytes, respectively. Periodic blind cross validation tests using a standard blood sample containing 0.01% PNH-type cells and a normal control were conducted to minimize inter-laboratory variations. From analysis of 68 healthy individuals >0.003% of PNH-type granulocytes and >0.005% of PNH-type erythrocytes were considered to be abnormal (Sugimori et al, Blood, 2006). [Results] As of May 2014, flow cytometry data have been collected from 1685 patients and are included in this interim analysis. Of these patients, 65 (4%) were diagnosed with PNH, 523 (31%) with AA, 459 (27%) with MDS, and 638 (38%) with BMF of unknown etiology. Overall, 154 (9%) patients had ≥1% of both PNH-type erythrocytes and granulocytes: 63 (97%) patients with PNH; 57 (11%) with AA; 18 (4%) with MDS; and 16 (3%) with BMF of unknown etiology. In total, 545 (32%) patients had ≥0.005% PNH-type erythrocytes and ≥0.003% PNH-type granulocytes. These consisted of the followings; all 65 (100%) patients with PNH; 264 (51%) with AA; 76 (17%) with MDS; and 140 (22%) with BMF of unknown origin. Lactate dehydrogenase (LDH) levels ≥1.5 × upper limit of normal range were seen in 14/329 (4%) patients with 0.005-1% PNH-type erythrocytes, 23/62 (37%) patients with 1-10% PNH-type erythrocytes, and 69/71 (97%) patients with ≥10% PNH-type erythrocytes. Periodic blind validation tests revealed that inter-laboratory differences in absolute measurements of PNH-type cells were always within 0.02%. [Conclusion] A high-resolution flow cytometry-based method, based on the Kanazawa method, that enables the detection of very low percentages of PNH-type cells was successfully transferred to 6 laboratories across Japan. Our results demonstrated that the proportion of patients identified as having small percentages of PNH-type cells differed depending on diagnosis (PNH, AA, MDS, or unknown BMF) and that elevated LDH levels (>1.5 x upper limits of normal range) were more frequently associated with higher percentages of PNH-type erythrocytes. Our findings suggest that the high resolution method is helpful as a diagnostic tool in BMF syndromes, including AA, MDS, and PNH, and may prove useful in understanding the pathophysiology of these disorders. Disclosures Noji: Alexion Pharma: Honoraria. Shichishima:Alexion Pharmaceuticals, Inc; and Medical Review Company: Honoraria, Research Funding. Obara:Alexion Pharma: Research Funding. Chiba:Alexion Pharma: Research Funding. Ando:Alexion Pharma: Research Funding. Hayashi:Alexion Pharma: Research Funding. Yonemura:Alexion Pharma: Research Funding. Kawaguchi:Alexion Pharma: Honoraria. Ninomiya:Alexion Pharma: Honoraria, Research Funding. Nishimura:Alexion Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Kanakura:Alexion Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 794-794
Author(s):  
Sebastien Jacquelin ◽  
Emma Dishington ◽  
Therese Vu ◽  
Axia Song ◽  
Matthew Heidecker ◽  
...  

Abstract Myeloid malignancies arise following the sequential acquisition of somatic mutations within hematopoietic stem and progenitor cells (HSPC). JAK2V617F is commonly found in myeloproliferative neoplasms (MPN) such as polycythemia vera, essential thrombocythemia and myelofibrosis. While other mutations (e.g. TET2, DNMT3A) have been found to co-occur in MPN HSPC, it remains unclear how they impact disease biology or progression from early stage disease (i.e. polycythemia or essential thrombocythemia) to advanced stage disease such as myelofibrosis or acute myeloid leukemia. DNMT3A methylates cytosine rich DNA residues (known as CpG islands, and often found in promoters of genes) leading to transcriptional repression. DNMT3A is also recurrently mutated at relatively low frequency in polycythemia vera (5-7%) but mutations are more common in advanced MPN (approximately 15% of MF and 17% of AML, Stegelmann et al. Leukemia 2011; Abdel-Wahab et al. Leukaemia 2011). These mutations are found in the methyltransferase domain and cluster around arginine 882 (e.g. R882H), resulting in loss of DNA binding and reduced catalytic activity. We used CRISPR-Cas9 gene editing technology to disrupt Dnmt3a function in mouse HSPC and assessed for cooperativity together with a conditional, knockin Jak2V617F allele. Jak2V617F/∆Dnmt3a-Cas9 but not Jak2V617F/Cas9 controls demonstrated increased HSPC self-renewal and proliferation properties in vitro as evidenced by serial replating in methylcellulose (>5 weeks) and increased colony forming unit capacity. Flow-cytometry analysis of Jak2V617F/∆Dnmt3a-Cas9 revealed enrichment in LKS+ (Lin-Sca-1highKithigh) cells 5 weeks after CRISPR-Cas9disruption of Dnmt3a, and this was associated with increased expression of stemness markers Kit and Cd34 in Jak2V617F/∆Dnmt3a-Cas9 cells. RNAseq was performed on early (week 1, P1) and late culture HSPC (week 5, P5) from Jak2V617F-Cas9 (P1 only) and Jak2V617F/∆Dnmt3a-Cas9 (P1, P5). This confirmed deletion of Dnmt3a in Jak2V617F/∆Dnmt3a-Cas9 but not in Jak2V617F/Cas9 controls. Transcriptional upregulation of Kit and Cd34 were confirmed, as well as other key stem cell genes such as Erg and Angpt1 in Jak2V617F/∆Dnmt3a-Cas9 P5. We observed denovo expression of imprinted genes Igf2 and H19 in Jak2V617F/∆Dnmt3a P5, suggesting impaired DNA methylation in this group. Jak2V617F/∆Dnmt3a-Cas9 P5 were significantly enriched for transcriptional pathways controlling cell cycle progression, oncogenic signatures, and DNA damage. Conversely, Jak2V617F/Cas9 controls were enriched for myeloid differentiation and normal progenitor cell signatures. To assess the effect of Dnmt3a loss on Jak2V617F driven MPN, we transplanted Jak2V617F/∆Dnmt3a-Cas9 or Jak2V617F/Cas9 LKS+ into irradiated B6 recipients. Recipients of Jak2V617F/Cas9 LKS+ developed early stage MPN reminiscent of polycythemia vera with high hemoglobin, white cell count and platelets and was sustained >32 weeks. In contrast, Jak2V617F/∆Dnmt3-Cas9 recipients exhibited a biphasic disease, reminiscent of human myelofibrosis. At 8 weeks, Jak2V617F/∆Dnmt3-Cas9 showed panmyelosis with thrombocytosis (1.38x106/µl vs. 1.14x106/µl controls, p=0.057). However, by 32 weeks, this mice became severely pancytopenic with progressive bone marrow failure (Hemoglobin 121g/L vs. 210g/L controls, p =0.0011; platelets 0.338x106/µl vs. 1.343x106/µl controls, p <0.0001). Jak2V617F/∆Dnmt3-Cas9 mice exhibited extreme splenomegaly associated with reticulin fibrosis and the accumulation of myeloid cells. Bone marrow histology of Jak2V617F/∆Dnmt3-Cas9 revealed osteosclerosis and disorganized architecture and a dense fibrocellular infiltrate and reticulin fibrosis. Flow cytometry revealed impaired erythropoiesis and blocked differentiation. AML was not seen. These data demonstrate new evidence linking loss of Dnmt3a with acquisition of self-renewal in combination with constitutively active Jak2V617F. Importantly, in vivo loss of Dnmt3a accelerates or induces myelofibrotic transformation of the underlying MPN. This work provides new understanding to the factors that promote advanced disease in MPN. Ultimately, such knowledge has the potential to inform the development of novel targeted therapeutic approaches for the treatment of transformed MPN, a highly chemorefractory disease associated with extremely poor prognosis in patients. Disclosures Lane: Janssen: Other: i have done consulting (once) for janssen..


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1285-1285
Author(s):  
Anna Dorota Chorzalska ◽  
John Morgan ◽  
Max Petersen ◽  
Diana O Treaba ◽  
Adam J Olszewski ◽  
...  

Abstract Background: Hematopoietic stem cells (HSC) ensure homeostasis and lifelong maintenance of hematopoietic system, but with age, they gradually lose quiescence, self-renewal potential, and system restoration capacity. HSC aging results in a differentiation shift towards myeloid lineage, anemia, thrombocytosis, decrease in T and B cells, imbalance in macrophage function, and increased osteoclast activity. Mechanisms involved in HSC aging include increased mTOR activity and ROS production, impaired autophagy, epigenetic reprograming, and cumulative DNA damage. Intriguingly, cellular and molecular similarities between aging and inflammation have led to a novel concept of "inflammation-associated aging of hematopoiesis". Understanding the molecular mechanisms responsible for this process may impact strategies targeting age-related diseases, including neoplasms. However, to date only few primary animal models of inflammation have shown bone marrow failure, so new animal models need to be established to provide mechanistic insight into the long-term implications of chronic inflammation on the hematopoietic system. We have previously shown that bone marrow-specific deletion of an adapter protein Abelson interactor-1 (Abi1) leads to a myeloproliferative neoplasm (MPN)-like disease in 35-56-week-old mice, mechanistically associated with increased activity of Src Family Kinases (SFKs), STAT3 and NF-κB. At both transcript and protein levels, Abi-1 is also significantly reduced in HSCs and granulocytes from patients with primary myelofibrosis (PMF), and Abi-1-deficient HSC in human PMF show increased SFK-STAT3-NF-κB signaling (Chorzalska, ASH 2017). Methods: Myeloid/lymphoid, stem/progenitor populations profiling by FACS, bone marrow transplantation assays, transcriptomics and proteomics analyses as well pro-inflammatory cytokine profiling and histopathology analyses were performed on the transgenic Abi-1KO mice carrying bone marrow-selective knockout at 4 weeks post-recombination, upon confirming both inducible inactivation of the Abi1flox allele and loss of Abi-1 protein in the marrow (Fig.1A, B). Results: To better understand initial systemic events that lead to the development of MPN-like disease in aged Abi-1KO mice we have now characterized early changes within the hematopoietic system associated with loss of Abi-1. Blood count analysis indicated leukocytosis, anemia and thrombocytosis, and an increase in the fraction of myeloid (CD11b+/Gr-1+) as well as macrophage/monocyte (F4/80+) cells at the expense of lymphoid (B220+) cells in Abi-1KO relative to Abi-1WT mice (Fig.1C). Previously reported 2.6-fold increase in Abi-1KO LT-HSCs (Chorzalska, ASH 2017) was now shown to be associated with 30% increase in number of LT-HSCs is in the S/G2/M phases of the cell cycle relative to Abi-1WT LT-HSCs (Fig. 1D). Lethally irradiated recipient C57BL/6 wild-type mice transplanted with bone marrow cells from Abi-1KO relative to Abi-1WT mice (in the absence of competitor cells) showed progressive loss of chimerism in primary and secondary recipients (Fig. E). Genome-wide gene expression analysis of Abi-1WT vs. Abi-1KO LSK cells showed significant overexpression of genes regulated by or involved in regulation of the NF-κB pathway (Fig. 1F). Plasma cytokine levels showed 2-fold increase in IL-1B, IL-12, IL-17, IL-23, IL-27, and MCP-1 and nearly 10-fold increase in INFγ (Fig. 1G). Label-free, intensity-based quantitative proteomic analysis of bone marrow from 20-week-old Abi-1KO and Abi-1WT mice showed abundance of peptides derived from Mac-1, myeloperoxidase, STAT1, STAT3, and SFKs - Hck and Fgr, confirming not only activation of SFKs and STAT3 signaling, but also increase in proteins associated with myeloid lineages (Fig. 1H). Loss of bone density (Fig. 1I) and a significant decrease in thymus size (Fig. 1J) were observed in Abi-1KO mice relative to Abi-1WT mice. Conclusions: In sum, phenotypic analyses performed 4-10-weeks post Abi1 gene inactivation indicate changes consistent with accelerated aging of hematopoietic system that are mechanistically linked to inflammatory SFK-STAT3-NF-κB signaling. To our knowledge this is the first animal model linking accelerated inflammation-driven aging of hematopoietic system to development of an MPN in aged mice. Disclosures Olszewski: Genentech: Research Funding; TG Therapeutics: Research Funding; Spectrum Pharmaceuticals: Consultancy, Research Funding. Reagan:Pfizer: Research Funding; Alexion: Honoraria; Takeda Oncology: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4308-4308
Author(s):  
Zunairah Shah ◽  
Israr Khan ◽  
Ali Shahbaz Baloch ◽  
Talha Awal ◽  
Sobia Aamir ◽  
...  

Abstract Introduction Fanconi anemia (FA) is the most common inherited cause of bone marrow failure syndrome, with an incidence of approximately 1 out of 100,000 births per year and a prevalence of 1 in 360 000 live births. Clinical presentation is variable, ranging from classic Fanconi phenotype to absence of somatic abnormalities. Despite advances in understanding disease genetics and pathogenesis, hematopoietic stem cell transplant (HSCT) remains the only curative treatment option for FA patients. However, the future risk of solid organ malignancies persists post-transplant. Although outcomes of allogeneic HSCT for FA are improving steadily but remains suboptimal and often limited by donor availability- especially in countries lacking matched unrelated donor registry. For patients lacking a suitable donor, a trial of androgen is considered but is not curative, and around half of patients will not respond. Haploidentical HSCT has been successfully utilized in the management of acquired severe aplastic anemia and hematological malignancies but only limited published literature is available on its use in inherited bone marrow failure syndromes. We conducted this systematic review to explore survival outcomes of FA patients receiving haploidentical HSCT to assess feasibility of this treatment for patients lacking a matched donor. Methods We conducted a literature search on Pubmed, Cochrane, Google Scholar, open grey, and embase databases using the keywords; Haploidentical Transplant and Fanconi anemia. We screened 236 articles according to the Prisma diagram. After thoroughly reading the titles and abstracts, 13 articles were included for data extraction, and results were compiled. Results We analyzed thirteen studies with haploidentical transplant as a treatment for FA, 7 were retrospective, and 6 were prospective. Diagnosis of FA was established by chromosomal breakage analysis and genetic mutation testing. The preferred donor for a haploidentical transplant was a first-degree relative and mother/sibling in most cases. The total number of patients with FA and other disorder who received haploidentical transplants were n=340. The median age at HSCT was 6.7 (0.25-44) years. Two hundred six were male, and 134 were female. The most common conditioning regimen for FA patients was fludarabine, cyclophosphamide, and total body irradiation (TBI) followed by anti-thrombocyte globulin. Mehta. et al. evaluated haploidentical transplant without TBI in the conditioning regimen. The most common regimen to prevent graft versus host disease (GVHD) was cyclosporin and mycophenolate mofetil. Uppulur. R et al., Bonfim. C et al., Thakar. M.S et al. and Ayas, M et al. also used post-transplant cyclophosphamide for in vivo T cell depletion. Zubicaray. J et al and Strocchio. L et al. did not use any post-transplant therapy. Cumulative Overall survival reported was 79.1%. Cumulative acute GVHD was seen in 38.2%, while cumulative chronic GVHD was seen in 18.6% of patients. The most common adverse events were acute and chronic GVHD, Evans syndrome, steroid-induced osteoporosis, and diabetes. Respiratory syncytial virus, pneumonia, candida sepsis reactivation, hemorrhagic cystitis, and mucositis were the most common infections. Conclusion Fanconi anemia is an inherited bone marrow failure syndrome with somatic abnormalities and increased risk of hematological and solid organ malignancies. In FA, allogeneic hematopoietic cell transplantation (HCT) has been shown to restore normal hematopoiesis in patients with matched related donor HCT and has shown excellent long-term survival. Currently, limited data is available reporting outcomes of haploidentical HSCT for FA patients. More studies are required to establish safety and efficacy profiles. Figure 1 Figure 1. Disclosures Anwer: Allogene Therapeutics: Research Funding; GlaxoSmithKline: Research Funding; Janssen pharmaceutical: Honoraria, Research Funding; BMS / Celgene: Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1452-1452
Author(s):  
Tiffany Simms-Waldrip ◽  
Michelle Yoonha Cho ◽  
Kenneth Dorshkind ◽  
Kathleen M Sakamoto

Abstract Abstract 1452 The cAMP-responsive element binding protein (CREB) is a nuclear transcription factor that regulates genes that control cell proliferation, differentiation, and survival. CREB overexpression leads to increased proliferation and survival of myeloid cells. Transgenic (Tg) mice overexpressing CREB under the control of the myeloid specific promoter hMRP8 develop myeloproliferative disease (MPD) but not leukemia. We hypothesized that transplantation of hematopoietic stem cells from CREB transgenic mice into lethally irradiated recipient wild type mice would lead to enhanced myelopoiesis and myeloid engraftment. The goal of our study was to determine if proliferative stress through transplantation would result in increased myeloid engraftment and progression of CREB overexpressing cells from MPD to leukemia. Steady state analyses were performed on CREB Tg mice, including flow cytometry to resolve common myeloid progenitors (CMP), granulocyte macrophage progenitors (GMP), and megakaryocyte erythroid progenitors (MEP), as well as cell cycle analysis to determine baseline proliferative state. In vitro and in vivo models that exposed CREB-expressing cells to proliferative stress were used. In the former case, long-term bone marrow cultures (LTBMC) were established on an adherent layer of stromal cells prepared from wild type (WT) bone marrow (BM) with media specific for myeloid cell growth. BM cells (2 × 106) from CREB Tg mice or WT controls were seeded onto the stroma and evaluated at 4 and 8 weeks for myeloid cell proliferation. In vivo studies were conducted by transplanting (2.5 × 106) BM cells from CREB Tg mice into lethally irradiated recipients that were sacrificed at 4 weeks. Cells harvested from LTBMC or transplant recipients were analyzed by flow cytometry to evaluate cell lineage and proliferation or were plated in methylcellulose and assessed for colony formation. In addition, kinetic analyses were performed on these populations. At baseline, CREB Tg mice have an increased percentage of early progenitors (1.8% vs. 1.2%, p=0.0001) with increased absolute numbers of CMP (17,683 cells vs. 11,650 cells, p=0.0001) at 12 weeks of age compared to WT controls. CREB Tg mice also have increased number of cells in S phase at baseline (26% vs. 20%, p=0.0022) due to upregulation of cyclins A and D. LTBMCs seeded with BM cells from CREB Tg mice had greater numbers of myeloid cells at 4 weeks compared to cultures established with WT marrow (4.5 × 106 cells/mL and 1.3 × 106 cells/mL respectively, p = 0.0135). Consistent with these data, mice transplanted with CREB Tg BM had a significantly higher percentage of donor myeloid cells at 4 weeks, detected using cell surface markers Gr-1+Mac-1+ (67% vs. 40%, p=0.0061). These mice also had a higher percentage of more differentiated Mac-1+ myeloid cells (11% vs. 0%, p=0.0014) and a higher number of myeloid cells in BM colony assays compared to recipients of WT marrow (69% vs. 13%, p<0.0001). At 4 weeks post-transplant, the histology of the spleen and liver from mice transplanted with CREB Tg marrow demonstrated replacement of the lymphocytes in the white pulp with macrophages, as well as extramedullary hematopoiesis in the liver that was not observed in WT controls. Our results provide evidence that CREB overexpression enhances myelopoiesis and short-term myeloid engraftment, but is not sufficient for transformation to AML. Therefore, CREB plays a critical role in normal hematopoietic dynamics and myeloid progenitor cell kinetics. Disclosures: Sakamoto: Abbott Laboratories, Inc.: Research Funding; Genentech, Inc.: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3608-3608
Author(s):  
Kohei Hosokawa ◽  
Sachiko Kajigaya ◽  
Keyvan Keyvanfar ◽  
Danielle M. Townsley ◽  
Bogdan Dumitriu ◽  
...  

Abstract Background. Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disorder that arises from hematopoietic stem cells (HSCs). PNH is caused by a somatic mutation in the X-linked phosphatidylinositol glycan class A gene (PIG-A), responsible for a deficiency in glycosyl phosphatidylinositol-anchored proteins (GPI-APs). PNH is a clonal disease that originates from HSCs, as the originating PIGA mutation is present in cells of multiple lineages, including myeloid, erythroid, and lymphoid cells. However, a critical question regarding PNH that has yet to be fully explained despite several decades of research is the mechanism responsible for clonal expansion of PIGA -mutant cells in bone marrow failure. Using RNA-seq, we identify pathways, coding and non-coding RNA transcripts, splice variants, or single nucleotide variants and other alterations that may relate to the selective advantage of PNH clone. Method. Blood samples were obtained after informed consent from patients with 14 PNH and 18 age-matched healthy donors. From PNH patients and healthy donors, 4 samples were used for RNA sequencing 6 samples were used for validation by flow cytometry. The liquid FLAER method was used for the detection of PNH-type granulocytes. For RNA extraction, granulocytes were sorted for CD11b+ FLAER+ granulocytes, CD11b+ FLAER- granulocytes. For bone marrow staining, cells not expressing lineage markers were separated into five subpopulations: Long-term hematopoietic stem cells (LT-HSC; Lin- CD34+ CD38- CD90+), short-term hematopoietic stem cells (ST-HSC; Lin- CD34+ CD38- CD90-), common myeloid progenitors (CMP; Lin- CD34+ CD38+ CD123+ CD45RA-), granulocyte-monocyte progenitors (GMP; Lin- CD34+ CD38+ CD123+ CD45RA+) and megakaryocyte-erythrocyte progenitors (MEP; Lin- CD34+ CD38+ CD123- CD45RA-). Results and Discussion. First, RNA expression levels in CD11b+ FLAER+ and CD11b+ FLAER- populations of PNH patients were analyzed using RNA sequencing. Expression levels of 7 mRNAs (CSF2RB, ACSL1, FCGR3B, IL1RN, CXCR2, TREM1, and TNFRSR10C) were significantly upregulated (> 3 FC, P < 0.01) in CD11b+ FLAER- cells of PNH patients compared with CD11b+ FLAER+ cells. To validate the differential expression observed in GPI-AP- granulocytes from PNH patients, protein expression levels of CSF2RB, FCGR3B, CXCR2, TREM1, and TNFRSF10C were assessed by flow cytometry. In CD11b+ FLAER- granulocytes of 6 PNH patients, increased expression of CXCR2 was validated, whereas decreased expression of FCGRB and TNFRSF10C were validated compared with CD11b+ FLAER+ granulocytes and that of healthy controls. Low expression FCGRB and TNFRSR10C in CD11b+ FLAER- granulocytes were considered to be reasonable, as these were GPI-APs. Next, we examined whether increased CXCR2 expression in PNH-type cells was validated in different peripheral blood cell populations. Increased CXCR2 expression in PNH-type cells was confirmed in granulocyte and monocyte populations, not in T cell or B cell population. We checked the expression levels of CXCR1 and CXCR2, which are closely related receptors that recognize CXC chemokines. CXCR2 expression was significantly different between normal and PNH-type cells in granulocytes and monocytes, and CXCR1 expression was significant only for granulocytes. To address the difference of CXCR2 expression levels between normal and PNH-type cells in more undifferentiated cells, we next examined the CXCR2 expression levels in bone marrow hematopoietic stem cells. Expression of CXCR2 was weakly expressed in hematopoietic stem cells and progenitors, both in normal and PNH-type cells, suggesting that difference of CXCR2 expression between normal and PNH-type cells is evident only in differentiated myeloid cells, not in hematopoietic stem cells or lymphoid cells. Conclusion. We provide evidence for increased expression of CXCR2 in PNH-type granulcoytes and monocytes by RNA-seq and flow cytometry. The differential expression of CXCR2 might partly explain the dominance of PNH clones in myeloid cells in patients. CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML (Schinke C, et al, Blood, 2015). Understanding the mechanism of increased CXCR2 expression in PNH-type cells may offer new therapeutic strategies and novel mechanistic insight into the pathophysiology of PNH. Disclosures Townsley: Novartis: Research Funding; GSK: Research Funding. Dumitriu:Novartis: Research Funding; GSK: Research Funding. Young:Novartis: Research Funding; GSK: Research Funding.


2021 ◽  
Author(s):  
Carlos Carrascoso-Rubio ◽  
Hidde A. Zittersteijn ◽  
Laura Pintado-Berninches ◽  
Beatriz Fernández-Varas ◽  
M. Luz Lozano ◽  
...  

Abstract Dyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34 + cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1 -interfered CD34 + cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence and apoptosis. Moreover, DKC1 -interfered human CD34 + cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome, and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2227-2227
Author(s):  
Nadia Danilova ◽  
Kathleen M. Sakamoto ◽  
Shuo Lin

Abstract Abstract 2227 Deficiency of ribosomal protein (RPs) is associated with Diamond Blackfan Anemia, a congenital syndrome with bone marrow failure and variable malformations. Recent studies have demonstrated that deficiency of several RPs leads to activation of p53 and related family members, ΔNp53 and ΔNp63. In addition, P53 inhibition rescues hematopoiesis in RP-deficient mice and zebrafish. p53 activation, however, results in the alteration of many pathways and specific mechanisms leading to bone marrow failure and other defects in DBA remain unidentified. To understand the global changes in gene expression downstream of RP insufficiency, we took a system biology approach to characterize the molecular pathways involving p53. We studied pathways downstream of p53 that contribute to the RPL mutant phenotype in zebrafish. Changes in p53-dependent pathways in RPL11 mutants included dysregulation of cell cycle and apoptosis, shift in energy production from glycolysis to aerobic respiration, suppression of biosynthesis of structurally important proteins, downregulation of detoxifying enzymes, and upregulation of factors leading to activation of adrenal-pituitary axis and inflammation. Among multiple metabolic changes were those that led to increased levels of insulin and glucose. Both differentiation and production of blood were affected. Expression of genes that regulate the development and function of neural system were notably decreased, in particular, those involved in the development of anterior brain structures and eyes. The production and migration of neural crest cells were disrupted suggesting possible explanation for craniofacial and other defects observed in patients with DBA. The RPL11 mutants also had abnormal development of hematopoietic stem cells and shortened life span of mature red blood cells. Dexamethasone treatment led to downregulation of p53 expression; suppression of p53 targets mediating cell cycle arrest and apoptosis; and rescue of expression of HSC markers such as runx1. The life span of erythroid cells was also increased in response to dexamethasone treatment. These data contribute to our understanding of the molecular pathophysiology of DBA and suggest new potential targets for therapeutic intervention. Disclosures: Sakamoto: Abbott Laboratories, Inc.: Research Funding; Genentech, Inc.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document