Remissions after Third Induction Chemotherapy for Primary Non-Responders with Acute Myeloid Leukemia (AML) Are Uncommon and Short-Lived

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2800-2800
Author(s):  
Sara Farshchi Zarabi ◽  
Steven M. Chan ◽  
Vikas Gupta ◽  
Dina Khalaf ◽  
Andrzej Lutynski ◽  
...  

Abstract The outcome of adult patients with AML who are primary non-responders to two courses of induction chemotherapy is poor. However, the utility of a 3rd induction for a select subgroup of these patients is uncertain. Here, we evaluated the rates of response and survival after a 3rd course of induction chemotherapy for primary non-responders with AML. We identified 98 patients from the Princess Margaret Cancer Centre between May 1999 and March 2015 who were non-responders to induction and reinduction chemotherapy. No-response to re-induction chemotherapy was defined according to the Revised Recommendations of the International Working Group for AML (JCO, 2003) as patients who survived > 7 days post re-induction and had persistent AML in blood or bone marrow (>5%). Median age was 58.3 years [range: 20-76.6]. 50 (51%) were male. 2% had favorable, 18% normal, 18% intermediate, and 48% adverse cytogenetics. 50% had de novo AML, 23% had AML secondary to MDS or MPN, and 17% had therapy-related AML. Induction chemotherapy consisted of "7+3" (n =88), Nove-HiDAC (n=1), Flag-Ida (n= 2), or similar variants (n=7). Reinduction chemotherapy consisted of Nove-HiDAC (n=70), Flag-Ida (n=7), "7+3" (n=1) or other similar variants (n =20). No patients received the same regimen for both induction and reinduction. Of the 98 primary non-responders, 15 received a 3rd induction regimen, while the others received supportive/palliative care ± low-dose chemotherapy (57 pts), or a non-induction clinical trial (26 pts). Average age was 56.4 (sd: 12.9) for patients who received supportive/palliative care and 47.0 (sd: 17.5) for patients who received a 3rd induction (p=0.008). Other baseline characteristics including gender, cytogenetic risk, marrow blast count post 2nd induction, and time between 1st and 2nd induction, did not differ between patients who did and did not receive a 3rd induction. Time to 3rd induction was a median of 54 days [range:36-126] from the start of the 2nd induction. Of the 15 third inductions, 7 were clinical trials evaluating novel agents in combination with induction chemotherapy, while the other 8 were combinations of standard chemotherapeutics (Flag-Ida n=1), AMSA+HiDAC (n=2), Daunorubicin+ HiDAC (n=1), Nove-HiDAC (n=4). Of the 15 patients who received a 3rd induction, 3 (20%) achieved a CR following Nove-HiDAC and Flag-Ida or AMSA+HiDAC chemotherapy, where the Ara-C was given as continuous infusion. 1 patient underwent allogeneic stem cell transplant (SCT) approximately 3.7 months after 3rd induction and remains alive 4.6 years post CR. 2 patients relapsed 2.3 and 4.7 months post CR without having received alloSCT. None of the 12 other patients responded to the 3rd induction and none had prolonged aplasia. 2 of 15 (13%) died during 3rd induction. Among the 83 patients who did not receive a 3rdinduction, 1 achieved a CR after a phase 1 clinical trial (MDM2 inhibitor) and remains in CR 3.6 years following an alloSCT. For patients who survived the immediate post induction period and were discharged from hospital median overall survival from the start of the 2nd induction did not differ between patients who did and did not receive a 3rd induction (276 days [range: 78-1304] vs 181.5 days [range: 47-1855] respectively p= 0.14). Median duration of hospital stay (including subsequent admissions) was longer for patients receiving a 3rd induction compared to those who did not (94 days following start of the 2nd induction [range: 47-169] vs 57 days [range: 51-181], respectively;(p= 0.003)). In summary, remissions after 3rd inductions for primary non-responders are uncommon, and short-lived, suggesting that 3rd inductions should be considered with caution and only when an SCT strategy is in place. Disclosures Gupta: Incyte Corporation: Consultancy, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Schuh:Amgen: Membership on an entity's Board of Directors or advisory committees. Yee:Novartis Canada: Membership on an entity's Board of Directors or advisory committees, Research Funding. Schimmer:Novartis: Honoraria.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3402-3402
Author(s):  
Seung-Ah Yahng ◽  
Jae-Ho Yoon ◽  
Sung-Eun Lee ◽  
Seung-Hwan Shin ◽  
Byung-Sik Cho ◽  
...  

Abstract Background The successful induction chemotherapy of acute myeloid leukemia (AML) depends on the ability to achieve complete remission (CR) and to maintain remission status as long as possible. Approach to improve the rate of CR includes the intensification of induction chemotherapy for AML. The primary goal of this study was to evaluate and compare the long-term outcomes between remission induction therapy with and without early intensification added to the standard 3+7 remission induction regimen. Methods A retrospective analysis was performed on de novo AML patients diagnosed and treated at Catholic Blood and Marrow Transplantation Center between January 2001 and December 2010. Six hundred forty-one adults of ages between 16 and 60 were included, all of whom received induction chemotherapy starting with 3 days of idarubicin and 7 days of cytarabine or behenoyl cytarabine (BHAC). Cases with t(9;22) and t(15;17) were excluded. Bone marrow (BM) aspiration study was assessed on day 7 of induction in all patients. Factors which were considered for early intensification of induction were the presence of ≥ 5% BM blasts, patient performance, and other high risk clinical characteristics, such as karyotype. Groups according to early intensification on days 8 to 10 of induction were as followings: no intensification (3+7), n=156; cytarabine or BHAC for 3 days (3+10), n=233; addition of idarubicin for 2 days to 3+10 regimen (5+10), n=252. After a median duration of 5.5 months (3.3-19.0) from diagnosis, 479 patients underwent stem cell transplantation (autologous [auto-SCT], n=144; allogeneic [allo-SCT], n=335). Conditioning regimen for auto-SCT consisted of fractionated total body irradiation (TBI), melphalan, and cytarabine, whereas 83% (n=278) of patients with allo-SCT received myeloablative conditioning, of which was mostly TBI-based regimen (92%). Donors were matched sibling (n=213), matched unrelated (n=63), mismatched unrelated (n=39), and haploidentical related (n=20). Results The median age at diagnosis was 39 years (16-60). Mean values of BM blast % on day 7 of induction was 3.5 in 3+7 group, 7.9 in 3+10, and 33.6 in 5+10 (p=<0.0001), while no significant difference in the proportion of adverse karyotype was shown (11.7% vs. 12.8%, p=0.804). After first induction (3+7, n=165; 3+10/5+10, n=465), the CR/CRi rate was significantly higher in 3+10/5+10 versus 3+7 (78.1% vs. 69.2%, p=0.023), while the rate for death in aplasia was lower (4.3% vs. 9.6%, p=0.013). After re-induction with various regimens, the CR/CRi rate was still significantly higher in intensified group (p=0.012). The relapse rates between the groups in 536 patients achieving CR (83.6%), however, was not significantly different (8.9% vs. 9.9%, p=0.737). SCT was performed at CR1 (n=459), CR2 (n=10), or relapsed/refractory status (n=10). Patients with auto-SCT mostly had better/intermediate cytogenetic risk (96%) at diagnosis, while 12% of allo-SCT had poor karyotype. After the median follow-up duration of 60.2 months (2.2-143.5), the median overall survival (OS) in all patients (n=641) was 65.6 months. The 5-year disease-free survival (DFS) of patients with auto- and allo-SCT was 58.4±4.2 and 64.9±2.7, respectively. Of 334 patients receiving allo-SCT, the 5-year DFS was significantly higher in patients achieving CR1 (n=299) after first induction therapy (p<0.0001), in whom 75% of them had early intensification. Other factors with significant impact on DFS after allo-SCT (n=334) were karyotype at diagnosis (p=0.032) and donor type (HLA-matched vs. HLA-mismatched sibling or unrelated, 58.1%±3.8 vs. 45.1±8.0, p=0.016). The significances were confirmed in multivariate analysis, which demonstrated that achieving CR1 after first induction regimen and its maintenance until SCT was the most powerful predictor for DFS after allo-SCT (67.1±2.9 vs. 34.6±7.8, p=<0.0001). When all patients were analyzed, according to induction intensification, a statistically significant benefit in 10-year OS was observed in 5+10 intensified group (44.8% vs. 52.9%, p=0.032). Conclusion Our results suggest possible benefit of examining day 7 BM aspiration for the strategy of early intensification of induction chemotherapy for adult AML patients and our intensification doses can be safely added with high efficacy in the achievement of CR1 compared to 3+7 standard regimen, and may have affected for better DFS after allo-SCT. Disclosures: Kim: BMS: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2518-2518
Author(s):  
Andrew Hantel ◽  
Niloufer Khan ◽  
Richard A. Larson ◽  
Lucy A. Godley ◽  
Michael J. Thirman ◽  
...  

Abstract Introduction Improving therapy for rel/ref AML remains a challenge. Decitabine, a DNA methyl-transferase inhibitor, initially showed promise in AML as a 5-day, first-line induction regimen and more recently as a 10-day regimen in older and unfit patients (1). However, little is known about the activity of decitabine in the rel/ref patient population despite increased use. Therefore, we sought to analyze the outcomes of these pts treated at our institution. Methods To obtain data regarding decitabine efficacy in rel/ref AML, we performed a retrospective analysis of outcomes following decitabine treatment in 34 adult pts treated at The University of Chicago from January 2009 to June 2014. Permission to access patient charts was granted by the medical centerÕs Institutional Review Board. AML was defined by WHO criteria, genetic risk grouping and complete remission (CR) was according to ELN classification; PR was defined as >50% decrease in bone marrow blasts and normalization of blood counts. Rel/ref AML was defined as either having had a prior CR with recurrence of disease or having received a prior induction regimen (1-2 cycles) without CR. Results Median pt age was 62 yrs (range, 18-81) and 60% were male. Median Charlson comorbidity index (CCI) was 5 (range, 0-8); 29% had ECOG performance status 0-1 and 71% had >2. 21 pts (62%) had de novo AML (7 with myelodysplasia-related changes), 3 (9%) had therapy-related myeloid neoplasm (t-MN), and 10 (29%) had secondary AML after myelodysplastic syndrome. 6% were in the ELN favorable genetic group, 3% intermediate-I, 18% intermediate-II, and 67% adverse; 2 cases were unevaluable. The median number of prior treatment regimens was three. 9% had received prior azacitidine, 85% had received prior HiDAC, and 38% had a prior allogeneic stem cell transplant (SCT). 34 pts received a total of 71 cycles of decitabine, 20 mg/m2 daily, in 5 or 10-day cycles every 28 days. All patients received 10-day courses, 91% had an initial 10-day course, and 74% had only 10-day courses. The median number of cycles per pt was 2; 59% received >1 cycle. 7 (21%) achieved CR and 4 (12%) had a partial response (PR), for an overall response rate (OR) of 33%. Responses occurred in 24% of pts with de novo AML, 66% with t-MN, and 50% with secondary AML. Intermediate and adverse group pts had OR of 14% and 39%, respectively. All pts achieving CR did so after 1 cycle; PR required a median of 3 cycles. Pts who achieved CR or PR had a significantly lower pretreatment WBC count (median, 9.5 vs 49.5 x 103/µL in non-responders; p=0.015) and blast percentage (44 vs 59.4; p=0.035) than those who did not. Pts with secondary AML or t-MN had a higher probability of OR compared to those with de novo AML (54 vs 23%; p=0.042). Median overall survival (OS) of all pts was 256 days; prior SCT was associated with reduced OS (p=0.017). When comparing de novo to secondary AML & t-MN, 1-year OS was not significantly different (Figure 1). Responders had a significantly longer OS (median, 622 days vs 278 days for non-responders; p=0.012). Age, race, CCI, ECOG PS, genetic risk group, prior HiDAC, dysplasia, azacitidine, and number of prior treatments did not impact OR or OS. 16 (47%) pts proceeded to SCT. During treatment, 70% had a grade 3-4 non-hematologic toxicity (based on NCI CTACE v4.0); the most common was fatigue. The median number of hospitalizations for complications per patient was 2 (range, 0-7). Causes of hospitalization were febrile neutropenia (40%), infection (22%), cytopenias (18%), rash (6%), acute kidney injury (6%), and 8% were for other causes. Conclusion Decitabine treatment of 34 adults with rel/ref AML resulted in an OR of 33% (21% CR) and allowed nearly one-half of these pts to proceed to SCT. All pts achieving CR did so after 1 cycle. Responding pts had improved OS over those without response (p=0.012). Interestingly, secondary AML or t-MN were 7.8 times more likely to achieve a response compared to de novo AML (p=0.046); lower WBC count and marrow blast percentage also correlated with higher OR. Further delineation of molecular subsets associated with response to decitabine should be evaluated in a larger prospective trial in this high-risk AML population. Citation 1. Blum KA, et al. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br J of Haem. Jul 2010;150(2):189-195. Figure 1. Figure 1. Disclosures Off Label Use: Decitabine is indicated for treatment of MDS but is often used to treat newly diagnosed or relapsed/refractory AML. In this study we analyzed results of patients with AML who were treated with decitabine in the relapsed/refractory setting.. Thirman:AbbVie: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Gilead: Research Funding; Merck: Research Funding; AbbVie: Research Funding; Gilead: Research Funding; Merck: Research Funding. Odenike:Sunesis: Membership on an entity's Board of Directors or advisory committees, Research Funding. Liu:Astra Zeneca/Medimmune: Consultancy; Pfizer: Consultancy; Astra Zeneca/Medimmune: Consultancy; Pfizer: Consultancy. Stock:Gilead: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1068-1068 ◽  
Author(s):  
Anna B. Halpern ◽  
Megan Othus ◽  
Emily M Huebner ◽  
Kaysey F. Orlowski ◽  
Bart L. Scott ◽  
...  

Abstract Introduction:"7+3" with standard doses of cytarabine and an anthracycline has remained the mainstay of induction chemotherapy for newly diagnosed AML. Since some studies have shown improved outcomes with high-dose cytarabine, cladribine, or escalated doses of anthracyclines, we conducted a phase 1/2 study (NCT02044796) of G-CLAM using escalated doses of mitoxantrone for newly diagnosed AML or high-risk MDS (>10% blasts). Methods: Patients≥18 years were eligible if they had treatment-related mortality (TRM) scores of ≤6.9 (corresponding to a predicted risk of early death with standard induction chemotherapy of ≤6.9%) and adequate organ function (LVEF ≥45%, creatinine ≤2.0 mg/dL, bilirubin ≤2.5 times upper limit of normal). Excluded were patients with uncontrolled infection or concomitant illness with expected survival <1 year. In phase 1, cohorts of 6-12 patients were assigned to 1 of 4 total dose levels of mitoxantrone (12, 14, 16, or 18 mg/m2/day, days 1-3, compared to 10 mg/m2/day used in standard dose G-CLAM previously established in relapsed/refractory AML). Other drug doses were G-CSF 300 or 480 μg/day (for weight </≥76 kg; days 0-5), cladribine 5 mg/m2/day (days 1-5), and cytarabine 2 g/m2/day (days 1-5). In phase 2, patients were treated at the maximum tolerated dose (MTD) of mitoxantrone. A second identical course of G-CLAM was given if complete remission (CR) was not achieved with cycle 1. Up to 4 cycles of consolidation with G-CLA (mitoxantrone omitted) were allowed if CR or CR with incomplete platelet or blood count recovery (CRp/i) was achieved with 1-2 cycles of induction therapy. Dose-limiting toxicities (DLTs) were: 1) grade 3 non-hematologic toxicity lasting >48 hours that resulted in >7-day delay of the subsequent treatment cycle; 2) grade ≥4 non-hematologic toxicity if recovery to grade ≤2 within 14 days, both excluding febrile neutropenia, infection or constitutional symptoms. Results: Among 33 patients (median age of 57.3 [range: 26-77], median TRM score 2.31 [0.16-5.90]) treated in phase 1, one DLT occurred at dose levels 3 and 4 (respiratory failure in both cases), establishing G-CLAM with mitoxantrone at 18 mg/m2/day as the MTD. Sixty-two patients, including 6 treated in phase 1, received G-CLAM at MTD. Patient characteristics were as follows: median age 58 (21-81) years, median TRM score 2.85 (0.06-6.73), with AML (n=52) or high-risk MDS (n=10). Cytogenetics were favorable in 6, intermediate in 44, and adverse in 12 (MRC criteria); 11 patients had NPM1 and 6 had FLT3 mutations. Fifty-two patients (83.9%, 95% confidence interval: 72.3-92.0%) achieved a CR (n=48 [77.4%: 65.0-87.1%]), or CRp/i (n=4 [6.5%: 1.8-15.7%]) with 1-2 cycles of therapy. Only 3 patients required 2 cycles to best response. Among the 48 CR patients, 43 (89.6%) were negative for measurable residual disease (MRDneg) by flow cytometry. Four patients had morphologic leukemia free state, 1 patient with myeloid sarcoma had a partial remission, 4 had resistant disease, and 1 died from indeterminate cause. One patient died within 28 days of treatment initiation (septic shock). Median times to an absolute neutrophil count ≥500/μL and a platelet count of ≥50,000/μL were 26 and 23 days. Besides infections and neutropenic fever, maculopapular rash, and hypoxia (fluid overload/infection-related) were the most common grade ≥3 adverse events. In addition to the phase 1/2 MTD cohort, there were 15 patients treated in an expansion cohort and 3 eligible patients treated off protocol with mitoxantrone at 18 mg/m2. For these 80 patients combined treated at MTD, the CR and CR/CRp/i rates were 76.3% and 81.2%. After multivariable adjustment, compared to 300 patients treated with 7+3 on the SWOG S0106 trial, G-CLAM with mitoxantrone 18mg/ m2 was associated with an increased probability of CR (odds ratio [OR]= 3.08, p=.02), CR/CRp/i (OR=2.96, p=.03), a trend towards improved MRDnegCR (OR= 3.70, p=.06), and a trend towards improved overall survival ([OS]; hazard ratio=0.34, p=.07). For the entire study cohort, the 6 and 12-month relapse-free survival were 73% (64-83%) and 62% (42-74%) and the 6 and 12-month OS were 89% (82- 96%) and 77% (67-88%). Conclusions: G-CLAM with mitoxantrone up to 18 mg/m2/day is well tolerated and has potent anti-leukemia activity. This regimen may warrant further randomized comparison with 7+3. We also plan to examine the addition of sorafenib to G-CLAM in newly diagnosed AML patients regardless of FLT3 status. Disclosures Othus: Glycomimetics: Consultancy; Celgene: Consultancy. Scott:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Research Funding, Speakers Bureau; Alexion: Speakers Bureau; Agios: Membership on an entity's Board of Directors or advisory committees. Becker:GlycoMimetics: Research Funding. Erba:Ariad: Consultancy; Gylcomimetics: Other: DSMB; Pfizer: Consultancy; Sunesis: Consultancy; Jannsen: Consultancy, Research Funding; Juno: Research Funding; Novartis: Consultancy, Speakers Bureau; Daiichi Sankyo: Consultancy; Celgene: Consultancy, Speakers Bureau; Agios: Research Funding; Astellas: Research Funding; Incyte: Consultancy, DSMB, Speakers Bureau; Celator: Research Funding; Seattle Genetics: Consultancy, Research Funding; Millennium Pharmaceuticals, Inc.: Research Funding; Amgen: Consultancy, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4040-4040 ◽  
Author(s):  
Kendra L. Sweet ◽  
Rami S. Komrokji ◽  
Eric Padron ◽  
Christopher L Cubitt ◽  
Leyla Khavarian ◽  
...  

Abstract Background: Induction chemotherapy for older adults with poor-risk AML has remained largely unchanged over the past 40 years, with complete remission (CR) rates ranging from 20-50%. Five-year overall survival (OS) ranges from 2-15%, illustrating the need for novel treatment strategies. Selinexor is an oral selective inhibitor of nuclear export (SINE) that has shown promising single agent activity in AML (NCT01607892). By inhibiting the primary export protein, XPO1, selinexor localizes tumor suppressor proteins to the nucleus leading to their activation. Furthermore, selinexor inhibits DNA damage repair, rationalizing its use in combination with DNA damaging agents. Preclinical data from our institution suggest Selinexor synergizes with daunorubicin when used in CD34+ AML cells. Here we report early results from a phase I clinical trial with selinexor plus cytarabine and daunorubicin in patients (pts) with newly diagnosed, poor-risk AML. Methods: This is a single institution phase I clinical trial with a 3+3 design and an expansion phase at the maximum tolerated dose (MTD)/recommended phase 2 dose (RP2D). The primary endpoint was to determine the MTD/RP2D of selinexor. Secondary endpoints included rate of CR/CRi, overall survival (OS), relapse free survival (RFS) and toxicity assessment. Eligible pts had a diagnosis of previously untreated AML (non-M3), with poor-risk features based on karyotype, mutational profile, secondary AML (sAML) arising from an antecedent hematologic disorder (AHD) or prior chemotherapy, or age ≥60 years. Prior treatment for an AHD was allowed. Induction included daunorubicin 60 mg/m2/day on days 1-3 and cytarabine 100 mg/m2/day CIVI days 1-7 (7+3) with two dose cohorts of selinexor: 60 mg and 80 mg PO. Selinexor was given on days 1, 3, 8, 10, 15 and 17. Re-induction with 5+2 plus selinexor was allowed if indicated. Once in CR, pts received 1-2 cycles of consolidation with 5+2 plus selinexor followed by maintenance selinexor on days 1 and 8 of a 21 day cycle for up 12 months. Selinexor was given at the same dose for all phases of the study. Pts could proceed to hematopoietic stem cell transplant (HCT) at any time after achieving CR. Results: 21 pts (14 (67%) M / 7 (33%) F) were enrolled from June 2015 to June 2016. Median age was 68 years (range 37-77); 18 (86%) were age ≥60 and 9 (43%) were age ≥70. Nineteen (90%) pts were considered poor-risk (unrelated to age), and two (10%) were eligible due to age ≥60 only. Each cohort enrolled 4 pts, and 13 pts were enrolled in the expansion. One pt in each cohort was replaced before completing the 28-day DLT period; one withdrew consent and the second died on day 23 from acute renal failure related to antibiotics. At data cutoff, 18 pts were included in the safety and efficacy assessment. Three additional patients have not completed induction. The early death rate (≤60 days) was 4.8%. No DLTs occurred in the dose-escalation cohorts. The MTD of selinexor was not reached and the RP2D was 80 mg twice weekly. The most common grade 3/4 non-hematologic, treatment emergent AEs in all pts were febrile neutropenia (56%), diarrhea (22%), hyponatremia (22%) and sepsis (17%). Nine patients (50%) achieved CR/CRi. Of the 14 pts treated at the RP2D (selinexor 80 mg), 6 (43%) achieved CR/CRi. In the entire cohort, the median age of the responders was 69 (61-77) and 4 (44%) were age ≥70. Seven (78%) were considered high-risk. Four (44%) had sAML. Two (22%) required a second induction. The median time to response was 47 days (range 28-77) At a median follow up of 8.7 months in the 9 responding pts, 7 (78%) remain in remission. Overall, 4 pts (44%) underwent HCT, and 1 (11%) relapsed just prior to HCT. Conclusion: Results from this phase I trial suggest that selinexor 80mg PO twice weekly can be safely administered in combination with induction chemotherapy using cytarabine and daunorubicin to pts with poor-risk AML, including older pts. The most prominent AEs were febrile neutropenia, diarrhea and hyponatremia. Response rates are encouraging and many elderly pts proceeded to transplant, suggesting this regimen warrants further investigation in this challenging population. Disclosures Sweet: Karyopharm: Honoraria, Research Funding; Incyte Corporation: Research Funding; Novartis: Consultancy, Speakers Bureau; Ariad: Consultancy, Speakers Bureau; Pfizer: Speakers Bureau. Komrokji:Novartis: Consultancy, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Sullivan:Karyopharm: Research Funding. Shah:Incyte: Research Funding; Rosetta Genomics: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Baxalta: Membership on an entity's Board of Directors or advisory committees; Bayer: Honoraria; Pfizer: Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4509-4509 ◽  
Author(s):  
R. Frank Cornell ◽  
Adriana C Rossi ◽  
Rachid Baz ◽  
Craig C Hofmeister ◽  
Chaim Shustik ◽  
...  

Abstract Introduction - Inhibition of Exportin 1 (XPO1) is a novel treatment approach for multiple myeloma (MM). XPO1 mediates the nuclear export of cell-cycle regulators and tumor suppressor proteins leading to their functional inactivation. In addition, XPO1 promotes the export and translation of the mRNA of key oncoproteins (e.g. c-MYC, BCL-2, Cyclin D). XPO1 overexpression occurs in solid and hematological malignancies, including MM and is essential for MM cell survival. Selinexor, the first oral SINE compound, has shown promising anti-MM activity in phase 1 studies but has been associated with gastrointestinal and constitutional toxicities including nausea, anorexia and fatigue. KPT-8602 is a second generation oral SINE compound with similar in vitro potency to selinexor, however, has substantially reduced brain penetration compared with selinexor, and demonstrated markedly improved tolerability with minimal anorexia and weight loss in preclinical toxicology studies. In murine models of MM, KPT-8602 can be dosed daily (QDx5) with minimal anorexia and weight loss. We have therefore initiated a phase 1/2 first-in-human clinical trial. Methods - This phase 1/2 clinical trial was designed to evaluate KPT-8602 as a single agent and in combination with low dose dexamethasone (dex) in patients (pts) with relapsed / refractory MM (RRMM). KPT-8602 is dosed orally (QDx5) for a 28-day cycle with a starting dose of 5 mg. Low dose dex (20 mg, twice weekly) is allowed after cycle 1 if at least a minimal response (MR) is not observed. The primary objective is to evaluate the safety and tolerability including dose-limiting toxicity (DLT), determine the maximum tolerated dose (MTD), the recommended Phase 2 dose (RP2D), and evidence for anti-MM activity for KPT-8602 single agent and in combination with dex. The pharmacokinetic (PK) and pharmacodynamic (PDn; XPO1 mRNA) profile of KPT-8602 will also be determined. PDn predictive biomarker analysis and ex vivo drug response assays are underway using tumor cells from bone marrow aspirates before treatment, during and at relapse. These analyses include cell death pathway assays by flow and nuclear/cytoplasmic localization of XPO1, NF-ƙB, IƙBα, IKKα, NRIF and p53 by imaging flow and IHC. Results - As of 01-Aug-2016, 6 pts 2 M/4 F, (median of 6 prior treatment regimens, median age of 71) with RRMM have been enrolled. Common related grade 1/2 adverse events (AEs) include thrombocytopenia (3 pts), nausea (2 pts) and diarrhea (2 pts). Grade 3 AEs include neutropenia (1 pt) and dehydration (1 pt). No grade 4 or 5 AEs have been reported. No DLTs have been observed and the MTD has not been reached. 5 pts were evaluable for responses (1 pt pending evaluation): 1 partial response, 1 minimal response, and 3 stable disease; no pts have progressed on therapy with the longest on for >5 months. The PK properties following oral administration showed that 5 mg of KPT-8602 was rapidly absorbed (mean tmax= 1 hr, mean Cmax= 30.6 ng/mL). The mean AUCinf was calculated to be 141 ng•hr/mL. After tmax, KPT-8602 declined at an estimated mean t½ of 4 hr. At the same dose level, XPO1 mRNA expression was the highest (~2.5 fold) at 8 hr post dose. Conclusions - Oral KPT-8602 is well tolerated in heavily pretreated pts with RRMM. Gastrointestinal and constitutional toxicities observed with twice weekly selinexor have not been observed with 5x/week KPT-8602, including in pts on study for >4 months. PK was predictable and in line with selinexor. These early results show encouraging disease control with pts remaining on therapy. Enrollment is on-going. Disclosures Rossi: Takeda: Speakers Bureau; Janssen: Speakers Bureau; Onyx: Research Funding, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. Baz:Takeda/Millennium: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Research Funding; Signal Genetics: Research Funding; Bristol-Myers Squibb: Research Funding; Merck: Research Funding; Novartis: Research Funding. Hofmeister:Karyopharm Therapeutics: Research Funding; Arno Therapeutics, Inc.: Research Funding; Signal Genetics, Inc.: Membership on an entity's Board of Directors or advisory committees; Janssen: Pharmaceutical Companies of Johnson & Johnson: Research Funding; Incyte, Corp: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Takeda Pharmaceutical Company: Research Funding; Teva: Membership on an entity's Board of Directors or advisory committees. Shustik:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Richter:Amgen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Jannsen: Speakers Bureau. Chen:Janssen: Honoraria, Research Funding; Takeda: Research Funding; Celgene: Honoraria, Research Funding. Vogl:Takeda: Consultancy, Research Funding; Celgene: Consultancy; GSK: Research Funding; Calithera: Research Funding; Teva: Consultancy; Karyopharm: Consultancy; Acetylon: Research Funding; Constellation: Research Funding. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Baloglu:Karyopharm Therapeutics: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Ellis:Karyopharm Therapeutics: Employment, Equity Ownership. Friedlander:Karyopharm Therapeutics: Employment. Choe-Juliak:Karyopharm Therapeutics: Employment. Sullivan:Karyopharm Therapeutics: Research Funding. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 42-42
Author(s):  
Alyssa I. Clay ◽  
Theresa Hahn ◽  
Qianqian Zhu ◽  
Li Yan ◽  
Leah Preus ◽  
...  

Abstract Both genome wide association studies (GWAS) of common variation and exome wide association studies (EXWAS) of rare variation have successfully identified disease susceptibility variants for a variety of diseases. One GWAS of inherited susceptibility to Acute Myeloid Leukemia (AML) has been conducted, but no EXWAS have been performed to measure risk of AML attributable to low-frequency constitutional genetic variation. We performed the first EXWAS of risk of AML as a nested case-control study in the DISCOVeRY-BMT (Determining the Influence of Susceptibility Conveying Variants Related to one-Year mortality after BMT) cohorts. The DISCOVeRY-BMT parent study examined transplant-related mortality in leukemia patients undergoing unrelated donor allogeneic BMT. To identify low frequency variants and genes contributing to increased susceptibility to AML we used genotype data from the Illumina HumanExome BeadChip typed in the DISCOVeRY-BMT cohorts; the HumanExome BeadChip contains 242,901 variants, which are mainly protein-coding variants. The optimal sequence kernel association test (SKAT-O) was used to analyze gene-level associations with risk of AML. These gene-based tests evaluate the cumulative effects of multiple single gene variants on risk of AML. Analyses were performed in all European American AML cases and two subtypes: 1) de novo AML, 2) de novo AML with normal cytogenetics. Models were adjusted for age at transplant and principal components to control for population stratification. For gene-based tests at least 2 variants with minor allele frequency (MAF) ≤ 5%, were required to be present in the gene. This yielded a total of 13,687 genes tested, and a Bonferroni corrected significance level of P<3.65 x 10-6. Association tests were performed in 1,189 AML cases reported to CIBMTR 2000-08 (Cohort 1) and 327 AML cases reported to CIBMTR from 2009-11 (Cohort 2). Controls in Cohorts 1 (n=1,986) and 2 (n= 515) were 10/10 HLA-matched unrelated donors who passed a comprehensive medical exam and deemed healthy. We used metaSKAT to combine Cohorts 1 and 2 and obtain p-values of association with AML. We present the results of gene-level tests significant in both cohorts. The likely pathogenicity of these variants was determined in silico using SIFT, PolyPhen and MutationTaster. Patient characteristics are in Table 1. DNMT3A, on chromosome 2, was associated in the gene-based test with risk of AML (Pmeta=1.70x10-9, Table 2). Three missense variants at MAF <1% comprise both overall AML and de novo AML gene-based association: exm177559 (Asn->Ser), exm177507 (Arg->His), and exm177543 (Arg->Trp). Normal cytogenetics de novo AML gene-based assocations consisted of only 2 of these variants: exm177559 and exm177507 (Table 2). While prevalence of exm177507 is <1% for all AML cases, in de novo AML with normal cytogenetics the MAF was higher at 3%. The other 2 variants had a MAF<1% irrespective of subtype. Somatically, DNMT3A is most frequently mutated in hematologic malignancies, with >30% of de novo AML cases with a normal karyotype and >10% of MDS patients having DNMT3A mutations. Although these are germline gene associations all three of the variants found have been reported somatically in hematologic malignancies. In 200 AML cases from The Cancer Genome Atlas (TCGA) p.R882H (represented as exm177507 on the exome chip) was a frequent somatic mutation (25%). Exm177543 (p.R635W) and exm177559 (p.N501S) are reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) as somatic mutations involved in hematopoietic and lymphoid tissue in both cell lines and humans. Exm177507 and exm177543 show evidence of pathogenicity in all three in silico tools, while exm177559 was reported as deleterious and disease causing by Sift and MutationTaster, respectively. Our results show that multiple potentially pathogenic missense germline variants in DNMT3A comprise the gene-based association with AML, specifically de novo AML with normal cytogenetics. Given the functional nature of these variants it is possible germline risk stratification could be informative in determining AML risk, and subsequently development of AML harboring DNMT3A mutations. Confirmation of these findings in additional cohorts could have implications for individualized risk screening, prediction and prognosis. Additional cytogenetic subgroup analyses, including treatment-related AML, are underway. Disclosures Hahn: Novartis: Equity Ownership; NIH: Research Funding. McCarthy:Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; The Binding Site: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Honoraria, Membership on an entity's Board of Directors or advisory committees; Gamida Cell: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sucheston-Campbell:NIH/NCI: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 690-690
Author(s):  
Tanya Skamene ◽  
Wenyu Jiang ◽  
Ralph M. Meyer ◽  
Michael Crump ◽  
John Kuruvilla ◽  
...  

Abstract Background: High dose chemotherapy followed by autologous stem cell transplant (ASCT) is the standard curative option for patients with relapsed or refractory, chemosensitive, aggressive non-Hodgkin lymphoma (NHL). The optimal timing for ASCT following salvage chemotherapy is not known. Cancer Care Ontario (CCO)-the cancer agency for Ontario, Canada's largest province-treatment guidelines recommend that no more than 91 days should elapse from the first day of salvage chemotherapy to stem cell transplant. We evaluated the impact of time to stem cell transplant in the context of the international CCTG LY.12 phase 3 clinical trial. Methods: Patients with relapsed or refractory (R/R) aggressive NHL were randomly assigned to gemcitabine, cisplatin and dexamethasone (GDP) or dexamethasone, cytarabine, cisplatin (DHAP), with or without rituximab, followed by ASCT [Crump JCO 2014]. Time interval definitions were based on CCO guidelines: Total Wait Time (TWT) as the number of days from the first day of salvage chemotherapy to day of ASCT; Apheresis Wait Time (AWT) as the number of days from the first day of salvage to the first day of stem cell collection; Stem cell transplant Wait Time (SWT) as the number of days from the last day of stem cell collection to the day of ASCT. Patients were considered to have experienced a delay in TWT, AWT or SWT if the time intervals exceeded 91, 70 and 21 days respectively. Overall survival (OS) and event-free survival (EFS) from transplant date were compared between patients who met and exceeded TWT targets using a Cox proportional hazards model. A linear regression model was applied to analyze TWT as a continuous variable. Univariate and multivariate analyses were performed to estimate the adjusted hazard ratio (HR) for TWT for the following co-variables: age ≤60, performance status 0/1, disease stage (I/II), presence of ≤1 extranodal sites, and response after cycle 2 (complete response, CR; complete response, unconfirmed, CRu; partial response, PR). Results: Of 619 patients enrolled on LY.12, 307 (47%) had sufficient response to salvage chemotherapy and adequate stem cell collection to complete ASCT on protocol. Among these, median age was 54.6 years, 64% were male and 94% had a performance status of 0 or 1. International Prognostic Index (IPI) score at relapse was 0-1 in 45%, 2 in 31% and ≥3 in 24%. The majority of patients had poor risk disease at study entry; 58% had a best response of stable disease (SD) or progressive disease (PD) to primary therapy, or initial duration of response < 1 year. Following up to 2 cycles of salvage chemotherapy, 75/307 (24%) achieved CR/CRu, 142/307 (46%) achieved PR, 89/307 (29%) had SD. One patient had missing data. The median TWT for the total transplanted population was 91 days (range 50-217). Median AWT and SWT were 63 (range 0-151) and 26 (range 6-146) days, respectively. Fifty percent of patients exceeded TWT target of 91 days; 32% and 57% of patients exceeded AWT and SWT targets. There was no difference in median OS (HR 0.96, 95% CI 0.66-1.39, p=0.81) or EFS (HR 1.13, 95% CI 0.82-1.55, p=0.46) between patients who exceeded and met TWT targets. The 4-year OS for patients who met and exceeded TWT was 62% and 64%, respectively. The 4-year EFS for patients who met and exceeded TWT was 43% and 50%, respectively. When analyzed as a continuous variable, TWT did not affect OS (HR 0.99) or EFS (HR 0.99). Comparison of the quartiles with shortest and longest TWT demonstrated HR 0.72 (95% CI 0.42-1.26, p=0.25) for overall survival and 0.69 (95% CI 0.44-1.09, p=0.11) for EFS. Comparison of the 10th and 90th percentiles for TWT demonstrated HR 0.67 (95% CI 0.28-1.59, p=0.36) for overall survival and 0.71 (95% CI 0.35-1.44, p=0.34) for EFS. Only the presence of ≤1 extranodal sites of disease was found to be predictive of OS in the transplanted population on univariate and multivariate analysis (adjusted HR 0.51, p=0.005). The median TWT was longer for the 31 patients transplanted at Italian centers, compared to 266 transplanted at Canadian centers (median TWT 90 vs. 118 days, t < 0.0001). Conclusion: In this exploratory analysis, limited to patients who completed transplant on the LY.12 clinical trial, we did not find evidence that those meeting current CCO ASCT wait time targets had superior outcomes compared with those who did not. Table. Table. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Kuruvilla: BMS: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Amgen: Honoraria; Abbvie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Merck: Honoraria; Roche Canada: Consultancy, Honoraria, Research Funding; Seattle Genetics: Consultancy, Honoraria; Lundbeck: Honoraria. Luminari:Roche: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel, Accomodations, Expenses; Takeda: Other: Travel, Accomodations, Expenses; Teva Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria. Hay:Amgen: Research Funding; Novartis: Research Funding; Janssen: Research Funding; Kite Pharmaceuticals: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1487-1487
Author(s):  
Tatjana Meyer ◽  
Nikolaus Jahn ◽  
Anna Dolnik ◽  
Peter Paschka ◽  
Verena I. Gaidzik ◽  
...  

Abstract Introduction BRCA1/BRCA2-containing complex 3 (BRCC36) is a Lys63-specific deubiquitinating enzyme (DUB) involved in DNA damage repair. Mutations in BRCC36 have been identified in 2-3% of patients with myelodysplastic syndromes (MDS) and secondary AML (sAML). The role of BRCC36 mutations in de novo AML and their impact on DNA damage-inducing cytotoxic chemotherapy sensitivity is not clear. Aim We aimed to determine the incidence of BRCC36 mutations in AML and their impact on outcome and drug sensitivity in vitro. Methods We analyzed the entire coding region of BRCC36 for mutations in 191 AML cases with t(8;21) (q22;q22.1) and 95 cases with inv(16) (p13.1q22) using a customized targeted sequencing panel. Data for de novo AML was derived from The Cancer Genome Atlas Research Network (TCGA) data set (NEJM 2013). Lentiviral CRISPR/Cas9 was used to inactivate BRCC36 in t(8;21)-positive AML cell lines - Kasumi-1 and SKNO-1 - and murine hematopoietic stem and progenitor cells (LSKs). Knockout was confirmed by a cleavage assay as well as Western blot. AML1-ETO-9a was expressed by a retroviral vector. Cell lines and LSK cells were treated with different concentrations of doxorubicin or cytarabine and their viability was assessed seven days post treatment. DNA damage was assessed through phospho-γH2AX staining using flow-cytometry. Results BRCC36 mutations were identified in 7 out of 191 patients (3.7%) with t(8;21) AML and none of 95 patients with inv(16). In the TCGA data set one out of 200 patients (0.5%) with de novo AML had a BRCC36 mutation. This patient had a complex karyotype and would be considered as secondary AML with myelodysplastic-associated changes according to the 2016 WHO classification. Six of the 7 mutations were missense or nonsense mutations that were predicted to be deleterious to BRCC36 function. One mutation affected a splice site at exon 6, resulting in an impaired splicing capability. With intensive standard chemotherapy all patients with BRCC36 mutations achieved a complete remission and had an estimated relapse-free and overall survival of 100% after a median follow up of 4.2 years. Given its role in DNA damage repair, we hypothesized that BRCC36 inactivation sensitizes AML cells to DNA-damage inducing drugs. In order to test this, we generated BRCC36 knockout Kasumi-1 and SKNO-1 cell lines using CRISPR-Cas9. BRCC36 inactivation had no impact on cell growth on either of the cell lines. However, we found that BRCC36 knockout cells were significantly more sensitive to doxorubicin as compared to the parental cells with normal BRCC36. This was accompanied by a significant increase in DNA damage as assessed by phospho-γH2AX in BRCC36 knockout vs control cells after doxorubicin treatment. In contrast, BRCC36 inactivation had no impact on cytarabine sensitivity. We next assessed drug sensitivity in primary murine leukemic cells expressing AML1-ETO-9a. Again, inactivation of BRCC36 resulted in a significant higher sensitivity to doxorubicin but not cytarabine. Conclusion We found BRCC36 to be recurrently mutated in t(8;21)-positive AML Inactivation of BRCC36 was associated with impairment of the DNA damage repair pathway and thus higher sensitivity to DNA damage-inducing chemotherapy. This might be also reflected by the favorable clinical outcome of patients with BRCC36 mutated t(8;21)-positive AML, a finding which has to be confirmed in a large patient cohort. Disclosures Paschka: Pfizer: Membership on an entity's Board of Directors or advisory committees; Takeda: Other: Travel support; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Otsuka: Membership on an entity's Board of Directors or advisory committees; Sunesis: Membership on an entity's Board of Directors or advisory committees; Jazz: Speakers Bureau; Amgen: Other: Travel support; Janssen: Other: Travel support; Bristol-Meyers Squibb: Other: Travel support, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Astellas: Membership on an entity's Board of Directors or advisory committees, Travel support; Astex: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Bullinger:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Speakers Bureau; Bayer Oncology: Research Funding; Sanofi: Research Funding, Speakers Bureau; Janssen: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau; Amgen: Honoraria, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Döhner:Novartis: Consultancy, Honoraria, Research Funding; Jazz: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Pfizer: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Janssen: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding; Agios: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Agios: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Seattle Genetics: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Sunesis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2629-2629
Author(s):  
Yuki Nishida ◽  
Jo Ishizawa ◽  
Vivian Ruvolo ◽  
Michael Andreeff

Abstract Background TP73 is one of the TP53 family transcription factors and generates two isoforms, the transactivation p73 (TAp73) and the N-terminally truncated ΔNp73. TAp73 shares a homologous N-terminal activation domain with p53 and has similar pro-apoptotic function to p53. ΔNp73 lacks an activation domain and has activities distinct from TAp73. ΔNp73 has a dominant negative effect on the DNA binding of TAp73 and more importantly, of p53, since the DNA binding domain is homologous with that of TAp73 and highly similar to that of p53. In acute myeloid leukemias (AML), TP73 has been reported to be expressed except in acute promyelocytic leukemias. However, the association of TP73 isoforms with clinical and genetic characteristics and the regulation of the isoforms in AML have not been explored. Results We determined copy numbers of ΔNp73 and TAp73 mRNA levels in 78 AML samples including 31 de novo AML using droplet digital PCR (ddPCR), which allows to determine the absolute quantity of the isoforms expressed, and investigated their clinical and biological relevance. ΔNp73 and TAp73 expression was detected in 93.6% and 98.7% of AML samples at variable levels (mean ± SEM, 10.6 ± 5.0, and 106.6 ± 33.7 copies/µL, for ΔNp73 and TAp73, respectively). ΔNp73 and TAp73 mRNA levels were highly correlated (R2 = 0.72, P < 0.0001). Normal peripheral blood mononuclear cells and CD34+ hematopoietic cells showed little or no ΔNp73 and TAp73 expression (0.09 ± 0.09 and 0.42 ± 0.35 copies/µL, respectively), demonstrating that expression of ΔNp73 and TAp73 is 100 - 1,000 fold higher in AML as compared to normal hematopoietic cells. These data collectively suggests that transcriptional systems of both isoforms in AML cells are abnormally activated. Disease status (de novo or relapsed/refractory) and cytogenetic abnormalities did not correlate with ΔNp73 and TAp73 levels. However, AML with IDH1/2 mutations had 8.5-fold lower ΔNp73 expression than those with wild-type IDH1/2 (1.8 ± 0.8 vs 15.4 ± 7.7 copies/µL, P = 0.0069), with a similar trend for TAp73 (49.0 ± 20.3 vs 138.6 ± 51.4 copies/µL, P = 0.056). For de novo AML samples, those with DNMT3a and NRAS mutations had significantly higher ΔNp73, but not TAp73, than those without these mutations (21.6 ± 18.2 vs 2.5 ± 1.2 copies/µL, P = 0.017 and 5.6 ± 2.5 vs 9.7 ± 8.0 copies/µL, P = 0.047, respectively). These findings suggest that ΔNp73 and TAp73 can be differentially regulated in AML based on mutation status. To further explore the regulation of TP73 isoforms, we used MDM2 inhibitor Nutlin-3a to induce p53 which is a transcriptional inducer of ΔNp73. Indeed, MDM2 inhibition increased p73 protein levels, and knockdown of both TAp73 and ΔNp73 in AML cells enhanced apoptosis induction by Nutlin-3a (specific annexin V induction by 5 uM Nutlin-3a, 21.9 ± 1.3% vs 61.3 ± 5.2%, P = 0.0084 in OCI-AML3 cells with vector control vs Shp73, respectively), possibly due to the silencing of ΔNp73. AML cells with IDH1/2 mutations are more dependent on Bcl-2 than those without (Chan, Nat Med 2015). Intriguingly, (R)-2HG, the oncometabolite of mutant IDH1/2, reduced both TAp73 and ΔNp73 in AML cells and increased susceptibility to the Bcl-2 inhibitor ABT-199. These results imply a potential mechanism that regulates p73 isoforms by histone methylation or other epigenetic modifications in AML. Conclusion Absolute quantitation of TP73 isoforms by ddPCR revealed high expression in AML cells compared to normal hematopoietic cells. The repressed expression of TP73 isoforms in AML cells with IDH1/2 mutations or by the oncometabolite (R)-2HG suggests that epigenetic modifications through (R)-2HG can regulate TP73 transcription and enhance the anti-leukemia effect by Bcl-2 inhibition. Finally, downregulation of TP73 isoforms enhances the efficacy of MDM2 inhibitor in AML, suggesting a potential therapeutic strategy to enhance MDM2 inhibitor-mediated p53 activation. Disclosures Andreeff: Amgen: Consultancy, Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Astra Zeneca: Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer ; SentiBio: Equity Ownership; Reata: Equity Ownership; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3746-3746 ◽  
Author(s):  
Naveen Pemmaraju ◽  
Hagop M. Kantarjian ◽  
Jorge E. Cortes ◽  
Madeleine Duvic ◽  
Joseph D Khoury ◽  
...  

Abstract Background: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematologic malignancy with heterogeneous clinical presentation and no available standard therapy. Little is known about the clinical characteristics, molecular characterization, and outcomes of patients (pts) with BPDCN. Methods: We conducted a retrospective review of pts age ≥18 years with a confirmed pathological diagnosis of BPDCN. Results: 37 pts evaluated at our institution between October 1998-June 2015 were identified. Table 1 shows baseline pt characteristics. Bone marrow (BM) was involved in 23 (62%), skin in 26(70%), lymph nodes in 11(30%), central spinal fluid (CSF) in 3 (8%) and 1 (3%) pt each had disease involving brain, uterus/ovary, elbow/soft tissue, and pleural fluid. Tumor immunophenotype demonstrated: CD4+ (31/32), CD56+ (29/32), TCL-1+ (19/21), CD 123+ (22/23). Additionally, CD22 was expressed in 3/9 pts. Frontline therapies received: 19 (51%) HCVAD; 5 (14%) CHOP, 5 (14%) clinical trials, 2 (5%) bortezomib-based, 1 AML induction with daunorubicin+ARAC, 1 oral MTX, 1 IFN-based therapy, 3 other regimens. 5 (14%) pts received radiation (XRT) as part of their therapy. Median follow-up time was 7 months [1-27 mo]. Median number of chemotherapy regimens was 1 [1-6]. Complete remission (CR1) (by standard AML criteria) was achieved in 19 pts (51%) with a median CR1 duration of 19 mo [1-39 mo]. Median overall survival (OS) was 23 mo [6-45 mo]. 23 (69%) pts died, the most common cause of death being multi-organ failure. Among 14 (38%) pts without BM involvement at diagnosis, all 14 had skin involvement. Comparison of pts with BM involvement versus skin-only showed no difference in outcomes. For pts with BM disease, median OS and median CR1 were 23 mo [1-45 mo] and 21 mo [1-39 mo], respectively. For pts with skin-only disease,median OS and median CR1 were 18 mo [1-31 mo] and 19 mo [1-23 mo], respectively, p =0.43 (OS), p=0.78 (CR1). 10 pts (27%) received stem cell transplant (SCT) [7 allogeneic (including 3 cord blood) and 3 autologous). The median OS for pts receiving SCT (n=10) was 18 mo [8-40 mo] versus 23 mo [1-45] for non-SCT group (n=27), p = 0.98. 19 pts (51%) received HCVAD as part of first-line therapy: median OS was 18 mo [1-45 mo] and median CR1: 21 mo [1-39 mo]. Out of 16 pts evaluable for response, 15 achieved CR1; 1 pt died at day 15 (pneumonia). A clinically validated 28-gene molecular panel (next-generation sequencing for commonly mutated genes in myeloid malignancies) is now being performed prospectively on all new pts with BPDCN seen at our institution (thus far, n=9); notably, all 9 have expressed some form of TET2 mutation [ordered mutations=3(c.1648C>T p.R550; c.3781C>T p.R1261C; c.4365del p.M1456fs*2)], ordered+variant=2,variants=4], confirming our earlier finding of occurrence of TET2 mutations in pts with BPDCN (Alayed K, et al Am J Hematol 2013). Thus far, there has been no statistically significant difference in terms of response rates in pts with known TET2 mutations/variants (n=9) vs all others/not done (n=26). Conclusions: Among patients with BPDCN, we observed an older, male predominance, a high incidence of TET2 mutations and, despite intensive chemotherapy and achievement of CR1 in many pts, most still experience relapse and short survival. Therefore, there is an urgent need for novel therapies. Therapies targeting cell surface CD123 and CD56, are available in 2 separate clinical trials at our institution: SL-401 (DT-IL3), which demonstrated 7/9 (78%) major responses including 5 CR, after a single cycle of therapy, (Frankel et al, Blood 2014) is currently being tested in an ongoing multicenter phase I/II trial (Stemline Therapeutics Inc, ClinicalTrials.gov Identifier: NCT02113982, refer to separate abstract ASH 2015) and Lorvotuzumab Mertansine (ImmunoGen, Inc), an antibody-drug conjugate targeting CD56 (ClinicalTrials.gov Identifier: NCT02420873), is in an ongoing ph II trial in CD56-expressing hematologic malignancies, including BPDCN. Table 1. Baseline characteristics (N = 37) Characteristic N (%) / [range] Median age, years 62[20 - 86] Male 33 (89) Median WBC x 109/L 5.9 [1.7-76.5] Median Hemoglobin g/dL 12.9 [6.8-17.1] Median Platelet x 109/L 130 [22-294] Median BM blast 13[0-95] Cytogenetics (n=27)DiploidComplexDeletion 12p13 17 8 1 Miscellaneous 1 28-gene profile (n=9); includes mutations& variantsTET2ASXL1MPLTP53IDH1IDH2 9 3 2 1 1 1 Disclosures Pemmaraju: Stemline: Research Funding; Incyte: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; LFB: Consultancy, Honoraria. Off Label Use: No standard of care available. clinical trial drug therapies/investigation/trial only various cytotoxic chemotherapies used in ALL, AML, other blood cancers. Cortes:BMS: Consultancy, Research Funding; BerGenBio AS: Research Funding; Teva: Research Funding; Pfizer: Consultancy, Research Funding; Ariad: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; Ambit: Consultancy, Research Funding; Arog: Research Funding; Celator: Research Funding; Jenssen: Consultancy. Duvic:Innate Pharma: Research Funding; Tetralogics SHAPE: Research Funding; Cell Medica Ltd: Consultancy; Array Biopharma: Consultancy; Oncoceutics: Research Funding; Millennium Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Spatz Foundation: Research Funding; Therakos: Research Funding, Speakers Bureau; Huya Bioscience Int'l: Consultancy; MiRagen Therapeutics: Consultancy; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Rhizen Pharma: Research Funding; Allos (spectrum): Research Funding; Soligenics: Research Funding; Eisai: Research Funding; Kyowa Hakko Kirin, Co: Membership on an entity's Board of Directors or advisory committees, Research Funding. Daver:ImmunoGen: Other: clinical trial, Research Funding. O'Brien:Pharmacyclics LLC, an AbbVie Company: Consultancy, Research Funding. Frankel:Stemline: Consultancy, Patents & Royalties, Research Funding. Konopleva:Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document