CUDC-907: An Oral HDAC/PI3K Dual Inhibitor with Strong Preclinical Efficacy in MCL Model

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4183-4183 ◽  
Author(s):  
Jordan N Boyle ◽  
Caroline R Kim ◽  
Hui Guo ◽  
Taylor Bell ◽  
Shengjian Huang ◽  
...  

Abstract Introduction Mantle cell lymphoma (MCL) is an aggressive lymphoma with elevated B-cell receptor activity. Ibrutinib (IBN), a Bruton's tyrosine kinase (BTK) inhibitor, has been shown to have a response rate of 68% in relapsed or refractory MCL patients. However, with the emergence of IBN-resistant lymphomas, new therapies are needed. It is suspected that upregulation of the PI3K-Akt-mTOR pathway allows survival in the presence of IBN. CUDC-907 is a next generation PI3K and HDAC dual-inhibitor currently in phase II clinical trials. Our objective is to investigate the effects of CUDC-907 in IBN-resistant MCL cells in vitro and in PDX model. Methods MCL cells were seeded at 10,000 cells per well in 96-well plate and were treated with various doses of compounds at the following concentrations: CUDC-907/Ibrutinib 0.015, 0.05, 0.15, 0.5, 1.5, 5, and 15 uM. Cell viability was tested by CellTiter-Glo luminescent cell viability assay (Promega) after a 72-hour incubation. Next, MCL cells were incubated with IBN at varying doses (0.39 uM, 1.56 uM, 6.25 uM), CUDC-907 (0.39 uM, 1.56 uM, 6.25 uM), and IBN+CUDC-907 (0.39 uM, 1.56 M, 6.25 uM) for 24 hours. Apoptosis was detected by Annexin V-binding assay. In patient derived xenograft (PDX) model: CUDC-907 was administered at a dose of 50 mg/kg in ibrutinib-resistant MCL-bearing PDX mice daily. Tumor volumes were measured as the length X width2 X 0.5 weekly. Toxicity was also observed every week. Mice were sacrificed once diameter of tumor mass reached 15 mm size. Results CUDC-907 inhibited the growth of both ibrutinib-sensitive and resistant MCL cells in vitro. Sensitive cell lines include: Rec-1, Mino, and JVM-13 with IC50 values of 1.1 nM, 1.0 nM, and 5 nM respectively. Resistant cell lines include: Granta-519, Maver-1, and Z-138 with IC50 values of 2 nM, 3 nM, and 1.5 nM respectively. All tested cell lines were more sensitive to CUDC-907 than to ibrutinib. In addition, combination treatments of CUDC-907 and IBN increased cell death in comparison to single agent treatments. Next, one pair of MCL cell lines, Jeko-1 (sensitive to IBN) and Jeko-R (resistant to IBN) were treated for 24 hours with varying doses of CUDC-907 or ibrutinib either as single agent inhibitors or in combination therapies. The results demonstrated that CUDC-907 induced apoptosis in both Jeko-1 and Jeko-R cell lines in a dose-dependent manner. Combination therapies increased cell death in a dose-dependent manner as well. In PDX model, tumor volume in treated mice of ibrutinib-resistant PDX decreased significantly compared with vehicle control (pvalue = 0.032). Control mice also weighed considerably more than treated mice (p value = 0.073). Common toxicities included a decrease in body mass for first 28 days of treatment. Conclusion CUDC-907, a dual inhibitor of PI3K-Akt-mTOR and HDAC, inhibits tumor growth of ibrutinib-resistant MCL in vitro and in PDX model. It would be a potential drug for the patients with ibrutinib-resistant/relapsed MCL. Disclosures Wang: Celgene: Research Funding; Onyx: Research Funding; Kite Pharma: Research Funding; Acerta Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Research Funding; Juno Therapeutics: Research Funding; Asana BioSciences: Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1442-1442
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Wencai Ma ◽  
Xiaoping Su ◽  
Hong Mu ◽  
...  

Abstract Wnt/β-catenin signaling regulates self-renewal and proliferation of AML cells and is critical in AML initiation and progression. Overexpression of β-catenin is associated with poor prognosis. We previously reported that inhibition of Wnt/β-catenin signaling by C-82, a selective inhibitor of β-catenin/CBP, exerts anti-leukemia activity and synergistically potentiates FLT3 inhibitors in FLT3-mutated AML cells and stem/progenitor cells in vitro and in vivo (Jiang X et al., Clin Cancer Res, 2018, 24:2417). BCL-2 is a critical survival factor for AML cells and stem/progenitor cells and ABT-199 (Venetoclax), a selective BCL-2 inhibitor, has shown clinical activity in various hematological malignancies. However, when used alone, its efficacy in AML is limited. We and others have reported that ABT-199 can induce drug resistance by upregulating MCL-1, another key survival protein for AML stem/progenitor cells (Pan R et al., Cancer Cell 2017, 32:748; Lin KH et al, Sci Rep. 2016, 6:27696). We performed RNA Microarrays in OCI-AML3 cells treated with C-82, ABT-199, or the combination and found that both C-82 and the combination downregulated multiple genes, including Rac1. It was recently reported that inhibition of Rac1 by the pharmacological Rac1 inhibitor ZINC69391 decreased MCL-1 expression in AML cell line HL-60 cells (Cabrera M et al, Oncotarget. 2017, 8:98509). We therefore hypothesized that inhibiting β-catenin by C-82 may potentiate BCL-2 inhibitor ABT-199 via downregulating Rac1/MCL-1. To investigate the effects of simultaneously targeting β-catenin and BCL-2, we treated AML cell lines and primary patient samples with C-82 and ABT-199 and found that inhibition of Wnt/β-catenin signaling significantly enhanced the potency of ABT-199 in AML cell lines, even when AML cells were co-cultured with mesenchymal stromal cells (MSCs). The combination of C-82 and ABT-199 also synergistically killed primary AML cells (P<0.001 vs control, C-82, and ABT-199) in 10 out of 11 samples (CI=0.394±0.063, n=10). This synergy was also shown when AML cells were co-cultured with MSCs (P<0.001 vs control, C-82, and ABT-199) in all 11 samples (CI=0.390±0.065, n=11). Importantly, the combination also synergistically killed CD34+ AML stem/progenitor cells cultured alone or co-cultured with MSCs. To examine the effect of C-82 and ABT-199 combination in vivo, we generated a patient-derived xenograft (PDX) model from an AML patient who had mutations in NPM1, FLT3 (FLT3-ITD), TET2, DNMT3A, and WT1 genes and a complex karyotype. The combination synergistically killed the PDX cells in vitro even under MSC co-culture conditions. After PDX cells had engrafted in NSG (NOD-SCID IL2Rgnull) mice, the mice were randomized into 4 groups (n=10/group) and treated with vehicle, C-82 (80 mg/kg, daily i.p injection), ABT-199 (100 mg/kg, daily oral gavage), or the combination for 30 days. Results showed that all treatments decreased circulating blasts (P=0.009 for C-82, P<0.0001 for ABT-199 and the combination) and that the combination was more effective than each single agent (P<0.001 vs C-82 or ABT-199) at 2 weeks of therapy. The combination also significantly decreased the leukemia burden in mouse spleens compared with controls (P=0.0046) and single agent treated groups (P=0.032 or P=0.020 vs C-82 or ABT-199, respectively) at the end of the treatment. However, the combination did not prolong survival time, likely in part due to toxicity. Dose modifications are ongoing. These results suggest that targeting Wnt/β-catenin and BCL-2, both essential for AML cell and stem cell survival, has synergistic activity via Rac1-mediated MCL-1 inhibition and could be developed into a novel combinatorial therapy for AML. Disclosures Andreeff: SentiBio: Equity Ownership; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Astra Zeneca: Research Funding; Celgene: Consultancy; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer . Carter:novartis: Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1867-1867
Author(s):  
Yijing Li ◽  
Yang Liu ◽  
Yuxuan Che ◽  
Joseph McIntosh ◽  
Alexa A Jordan ◽  
...  

Abstract Introduction As a rare form of non-Hodgkin's lymphoma, mantle cell lymphoma (MCL) is an aggressive subtype. This is largely due to frequent relapses after therapies including paradigm shifting therapies BTK inhibitors (BTKi), such as ibrutinib and acalabrutinib, and Bcl-2 inhibitor (Bcl-2i) venetoclax after long-term treatment in the clinic. Dysregulation of Bcl-2 and Bcl-X L, contributes to therapeutic resistance in MCL. AZD0466 is a novel and highly potent Bcl-2/X L dual inhibitor with active moiety AZD4320. Our preliminary data showed AZD4320 is potent in inhibiting cell viability of MCL cells (IC 50 = 1.6-78 nM). In this study, we assessed the combination efficacy of AZD4320/AZD0466 and acalabrutinib on preclinical MCL models. Methods Cell viability assay was performed to assess the in vitro efficacy of AZD4320 and acalabrutinib alone or in combination in a panel of ibrutinib/venetoclax-sensitive and -resistant MCL cell lines. Cell apoptosis assay was also performed to determine if AZD4320 and acalabrutinib enhanced cell death by cell apoptosis in MCL cell lines. Protein expression profiles of a panel of pro- and anti-apoptotic proteins and other relevant proteins were detected by immunoblotting. Since AZD4320 is limited in preclinical model due to physicochemical properties and dose limiting cardiovascular toxicity, AZD0466, the drug-dendrimer conjugate of AZD4320, was used for in vivo experiment. In vivo efficacy of AZD0466 (34 mg/kg, weekly, iv) and acalabrutinib (20 mg/kg, BID, oral) alone or in combination was evaluated using a Mino-venetoclax-R (Mino-R) cell xenograft model and a PDX model derived from an ibrutinib-CAR-T dual-resistant MCL patient. Results AZD4320 in combo with acalabrutinib inhibited cell proliferation synergistically in both ibrutinib/venetoclax-sensitive and -resistant cell lines (combination index = 0.17-0.93). Compared to vehicle or either single agent, the combination enhanced cell apoptosis by increasing pro-apoptotic markers cleaved caspase 3 and cleaved PARP. In the xenograft mouse model derived from venetoclax-resistant Mino-R cells, co-treatment of AZD0466 and acalabrutinib decreased tumor size significantly compared to vehicle (n = 5, p &lt; 0.0001) or either single agent (n = 5, p = 0.0118 and 0.0070, respectively). Furthermore, in the PDX mouse model derived from a patient relapsed subsequently from ibrutinib and CAR T therapy, the combination of AZD0466 and acalabrutinib inhibited tumor growth compared to vehicle or either single agent. Acalabrutinib or AZD0466 improved survival compared with vehicle by 14 days or 32 days, respectively. Compared to Acalabrutinib or AZD0466, the combination therapy extended survival by 25 days and 7 days, respectively. All mice tolerated the treatment dose without any weight loss compared to the vehicle or either single agent group. Conclusion Compared to AZD4320/AZD0466 and acalabrutinib, combination therapy demonstrated anti-MCL synergy both in vitro and in vivo. These findings suggest that targeting Bcl-2/X L and BTK is promising to overcome multiple acquired resistance phenotypes, including CD19 CAR T-cell therapy. Disclosures Andersen: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Cidado: AstraZeneca: Current Employment, Current equity holder in publicly-traded company. Wang: DTRM Biopharma (Cayman) Limited: Consultancy; BeiGene: Consultancy, Honoraria, Research Funding; Physicians Education Resources (PER): Honoraria; Anticancer Association: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; CAHON: Honoraria; The First Afflicted Hospital of Zhejiang University: Honoraria; Epizyme: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria, Research Funding; BGICS: Honoraria; Imedex: Honoraria; Clinical Care Options: Honoraria; Celgene: Research Funding; Genentech: Consultancy; Loxo Oncology: Consultancy, Research Funding; InnoCare: Consultancy, Research Funding; Molecular Templates: Research Funding; Lilly: Research Funding; VelosBio: Consultancy, Research Funding; BioInvent: Research Funding; Oncternal: Consultancy, Research Funding; OMI: Honoraria; Newbridge Pharmaceuticals: Honoraria; Scripps: Honoraria; Hebei Cancer Prevention Federation: Honoraria; Chinese Medical Association: Honoraria; Pharmacyclics: Consultancy, Research Funding; Juno: Consultancy, Research Funding; CStone: Consultancy; Bayer Healthcare: Consultancy; Miltenyi Biomedicine GmbH: Consultancy, Honoraria; Kite Pharma: Consultancy, Honoraria, Research Funding; Acerta Pharma: Consultancy, Honoraria, Research Funding; Dava Oncology: Honoraria; Moffit Cancer Center: Honoraria; Mumbai Hematology Group: Honoraria.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1574-1574
Author(s):  
Efstathios Kastritis ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Steffen Klippel ◽  
Douglas W. McMillin ◽  
...  

Abstract Abstract 1574 Cancer cells with stem cell-like features are a topic of intense research because their resistance to existing drugs is considered a culprit for relapses, even in patients with complete remission defined by clinical, biochemical and imaging parameters or by sensitive molecular techniques. Salinomycin, an antibacterial and coccidiodostatic ionophore, is reported (Cell 2009;138(4):645-59) to be >100-fold more potent against breast cancer cells with stem cell-like phenotype after mesenchymal transdifferentiation due to stable transfection with shRNA against CDH1 than against the parental cells. We evaluated whether salinomycin could also exhibit a similar activity against stem cell-like cells in multiple myeloma (MM). To establish a comparative reference for such potential activity, we first tested salinomycin (0-10 uM for up to 72hrs) against a panel of 15 MM cell lines and observed IC50 values <1 uM in 10/15 cell lines tested, including >80% reduction of tumor cell viability in 6/15 cell lines tested at 0.5 uM, i.e. levels lower than the IC50 values for in vitro activity of salinomycin against breast cancer cells with (HMLE-shCDH1, IC50 ∼1 uM) or without (HMLE-shControl, IC50 >>10 uM) stem cell-like features. CD138+ purified primary tumor cells from 3 MM patients responded to salinomycin with IC50 values (105, 332 and 750 nM, respectively) in the same range as MM cell lines. In vitro combinations with bortezomib, doxorubicin, melphalan, and dexamethasone showed overall no antagonism, while evidence of additive or even synergistic effect could be identified in certain dose ranges. Because MM cell lines and primary tumor cells responded concordantly to salinomycin and with higher sensitivity than breast cancer stem cell-like cells, we hypothesized that MM cells may in general be more responsive to salinomycin than other tumors. Since tumor-stromal interactions can increase the expression of transcriptional signatures of “stemness” in MM cells, we embarked on characterizing the anti-MM properties of salinomycin using compartment-specific bioluminescence imaging (CSBLI) assays. These showed that co-culture with stromal cells did not confer resistance to salinomycin in 5 MM cell lines (MM.1S, OCI-My5, KMS-11, KMS-18, NCI-H929) and in fact enhanced its activity against 4 of them. Side population (SP) cells, defined by their ability to efflux Hoechst stain, represent a stem cell-like population which was identified in MM cell lines and could represent the functional equivalent of the mesenchymally transdifferentiated breast cancer stem cell-like cells. We observed that salinomycin reduces the SP fraction of MM cell lines at doses >20 times lower than those required for in vitro effect against the bulk <<main population>> of the respective cell lines. Interestingly, the anti-SP effect of salinomycin was more pronounced in the presence of stroma, similarly to the CSBLI studies on the entire MM cell population and consistent with our prior observation that tumor-stroma interaction enhances transcriptional signatures of ≪stemness≫ in the tumor compartment. However, when we tested the in vivo anti-MM activity of salinomycin in an orthotopic model of i.v. injected Luc+ MM cells, no anti-MM activity (in terms of tumor burden decrease or overall survival prolongation) was observed at the maximum tolerated dose (1 mg/kg i.p. daily, which is consistent with most studies reported thus far in the literature). Ex vivo treatment of KMS-11 cells with salinomycin doses (100 nM for 72 hrs) selectively targeting SP cells was followed by s.c. injection of these cells or vehicle-treated controls in sublethallly irradiated SCID/NOD mice, but no statistically significant improvement in tumor burden or overall survival was observed. Our in vitro results indicate that salinomycin exhibits intriguing in vitro anti-MM activity, not only against SP cells but also against the bulk ≪main≫ MM cell population, even in the presence of stromal support. In contrast, the in vivo activity of salinomycin is compromised by side effects in the orthotopic model of MM lesions, while short term ex vivo exposure of tumor cells is conceivably insufficient to eradicate clonogenic cells and lead to appreciable delay in tumor growth in vivo. Our studies point to intriguing features as well as notable challenges that have to overcome before salinomycin or other more selective agents of this class can be safely tested in clinical trials in MM. Disclosures: McMillin: Axios Biosciences: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Mitsiades:Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2530-2530 ◽  
Author(s):  
Jugnu Jain ◽  
Jianguo Ma ◽  
Brinley Furey ◽  
Christian Recher ◽  
Cecile Demur ◽  
...  

Abstract VX-944 is a small molecule, orally bioavailable, specific inhibitor of inosine monophosphate dehydrogenase (IMPDH), an essential rate-limiting enzyme in de novo guanine nucleotide synthesis. We have previously shown that VX-944 has broad anti-cancer properties in vitro and that its potency is not affected by MDR pumps (Jain et al, Blood 2002, 100:572a; ibid 2003, 102: 622a). Here, we describe studies that demonstrate its oncolytic activity in blast cells derived from patients with acute myeloid leukemia (AML). We also report the efficacy of VX-944 in an aggressive murine model of myeloproliferative disease. The anti-leukemic activity of VX-944 was established both in colony formation assays and in viability assays using primary cells from AML patients. VX-944 inhibited the clonogenic proliferation of acute myeloid progenitor cells in a dose-dependent manner. The mean and median IC50 values were 218±92 and 199 nM respectively (n=8), indicating that no samples were resistant to VX-944. In another study, VX-944 reduced the viability of AML blasts from 4 additional patient samples, with IC50 values ranging from 20–200 nM. VX-944 was observed to be 3–40-fold more potent than mycophenolic acid (MPA, MMF), another IMPDH inhibitor. Importantly, genotyping of these samples revealed that VX-944 is active against cancer cells with wild type and point- or ITD-mutations in Flt3 that are implicated in approx 30% of AML patients. The anti-proliferative activity of VX-944 was at least additive, and in some patient samples, synergistic, when tested in combination with Daunorubicin, a standard chemotherapy drug for AML. To determine the therapeutic potential of VX-944 in vivo, VX-944 was tested in a leukemia model using Ba/F3 cells transduced with an activating human Flt-3 mutation injected into Balb/c mice. The anti-proliferative activity of VX-944 was first established in vitro in the cell lines used in the model. VX-944 inhibited the proliferation of the human MV-4-11 and murine Ba/F3-Flt3-ITD-dependent cell lines with IC50 values of 26 and 30 nM, respectively. In PK studies, a dose-dependent increase in Cmax and AUC values were observed in Balb/c mice. In the leukemia model, VX-944 was administered orally at 75 or 150 mg/kg BID. Doxorubicin (3 mg/kg, weekly), a standard AML therapy, and MLN518 (60 mg/kg BID), a selective Flt3 inhibitor, were administered as reference compounds. All treatments began 5 days following cell implantation. Both dose groups of VX-944 provided a significant increase in median survival time as compared with the vehicle treated group (p &lt;0.001). Three of the 12 mice treated with 150 mg/kg VX-944 were still alive on Day 35 when the study was terminated. Further studies are underway to optimize the dosing regimen of VX-944 in xenograft models. In conclusion, we have demonstrated both potency and efficacy of VX-944 in in vitro and in vivo leukemia models. These preclinical results support further clinical development of VX-944 for the treatment of patients with leukemias and other rapidly proliferating hematological malignancies. VX-944 may provide significant therapeutic benefit when used alone, or in combination with approved chemotherapy agents such as Daunorubicin.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1837-1837 ◽  
Author(s):  
Shengjian Huang ◽  
Loretta J. Nastoupil ◽  
Hui Guo ◽  
Taylor Bell ◽  
Makhdum Ahmed ◽  
...  

Abstract Background: Mantle cell lymphoma (MCL) accounts for 6% of all non-Hodgkin lymphoma and is a therapeutic challenge. Phosphoinositide-3 kinase (PI3K) has been shown to be an alternative survival pathway in relapsed/refractory MCL. KA2237 (designed by Karus Therapeutics Ltd, Oxfordshire, United Kingdom) is a dual inhibitor of the class I beta and delta isoforms of the 110 kDa catalytic subunit of PI3K. By selectively targeting PI3K-beta and -delta isoforms and preventing their activation, KA2237 may decrease proliferation and induce cell death in susceptible tumor cells. Methods: We assessed the effects of KA2237 on the in vitro cell proliferation of both ibrutinib-sensitive (Mino, Jeko-1, and Rec-1) and primary ibrutinib-resistant (Z-138 and Maver-1) cell lines, and acquired ibrutinib-resistant MCL cell line, Jeko-R. We also tested the viability of patient-derived xenograft (PDX) tumor cells to KA2237. We compared the efficacy of KA2237 with two other commercial PI3K inhibitors, duvelisib (IPI-145, Selleck) and idelalisib (Cal-101, Selleck). Also, we paired these three inhibitors (KA2237, duvelisib and idelalisib) each with ibrutinib to evaluate the potential synergistic effects of these combinations. Lastly, we also tested in vivo efficacy of KA2237 and its combination with ibrutinib in PDX tumor cells. Results: KA2237 inhibited cell proliferation in both ibrutinib-sensitive and ibrutinib-resistant cell lines in a dose-dependent and time-dependent manner. For Mino and Jeko-1, the IC50 was 4.8 uM and 2.9 uM and for Z-138 and Maver-1 cell lines, the IC50 was 0.6 uM and 0.1 uM, respectively. KA2237 also decreased cell viability of ibrutinib-sensitive and ibrutinib-resistant MCL PDX tumor cells. However, KA2237 did not decrease the cell viability of normal human peripheral blood mono-nuclear cells. KA2237 arrested phase G0/G1 in Rec-1 and Jeko-R cell lines. We detected the expression of PI3K isoforms in MCL, finding higher expression of PI3K β and δ in MCL-resistant cell lines as compared with sensitive cell lines. We found that KA2237 induced MCL cell apoptosis in a time-dependent and dose-dependent manner. In comparison with duvelisib and idelalisib, KA2237 achieved greater inhibition of cell viability, cell apoptosis and cell cycle arrest. Furthermore, we found synergistic effects of KA2237 and ibrutinib combination in several MCL cell lines and in PDX models. In an ibrutinib-resistant PDX model, KA2237 treated mice reduced tumor burden significantly compared with vehicle control, and higher tumor growth inhibition was achieved as compared with ibrutinib. Conclusion: The novel PI3K inhibitor, KA2237 may be a potential candidate for MCL therapy, especially in the ibrutinib-resistant cases. Disclosures Wang: Acerta Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno Therapeutics: Research Funding; Pharmacyclics: Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Research Funding; BeiGene: Research Funding; Asana BioSciences: Research Funding; Kite Pharma: Research Funding; Celgene: Research Funding.


2020 ◽  
Vol 13 (9) ◽  
pp. 208
Author(s):  
Min-Hee Kim ◽  
Tae Hyeong Lee ◽  
Jin Soo Lee ◽  
Dong-Jun Lim ◽  
Peter Chang-Whan Lee

Hypoxia-inducible factor (HIF)-1α plays an important role in cancer progression. In various cancers, including thyroid cancer, overexpression of HIF-1α is related to poor prognosis or treatment response. However, few studies have investigated the role of HIF-1α inhibition in thyroid cancer progression. We evaluated the utility of the HIF-1α inhibitor IDF-11774 in vitro utilizing two thyroid cancer cell lines, K1 and BCPAP. Both cell lines were tested to elucidate the effects of IDF-11774 on cell proliferation and migration using soft agar and invasion assays. Here, we found that a reduction of HIF-1α expression in BCPAP cells was observed after treatment with IDF-11774 in a dose-dependent manner. Moreover, cell proliferation, migration, and anchorage-independent growth were effectively inhibited by IDF-11774 in BCPAP cells but not in K1 cells. Additionally, invasion of BCPAP but not K1 cells was controlled with IDF-11774 in a dose-dependent manner. Our findings suggest that promoting the degradation of HIF-1α could be a strategy to manage progression and that HIF-1α inhibitors are potent drugs for thyroid cancer treatment.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3357-3357
Author(s):  
Renate Burger ◽  
Steven Legouill ◽  
Yu-Tzu Tai ◽  
Reshma Shringarpure ◽  
Klaus Podar ◽  
...  

Abstract In multiple myeloma (MM), IL-6 plays an important role for tumor cell growth, survival, and drug resistance. Janus kinases (JAKs) are protein tyrosine kinases and constitutively associated with the gp130 chain of the IL-6 receptor complex. Their activation is one of the first steps in cytokine receptor-mediated signaling and critical for virtually all subsequent downstream signaling cascades. INCB20 is a small-molecule synthetic compound which, in biochemical assays, potently inhibited all four JAKs with IC50 values between 0.3 nM and 1.2 nM (for comparison, IC50 of AG490, another JAK inhibitor, was &gt;50 μM). Consistent with the central role of JAKs in gp130-mediated signaling, INCB20 inhibited IL-6 induced phosphorylation of SHP-2, STAT1, STAT3, ERK1/2, and AKT in MM1.S cells. In contrast, AKT phosphorylation induced by IGF-1 remained unchanged. Evaluation of the cellular efficacy of INCB20 was performed using the IL-6 dependent INA -6 cell line. Growth of INA-6 cells was inhibited in a dose-dependent manner with an IC50 of approx. 0.5 μM, as measured by [3H]-thymidine uptake and an MTS-based assay (for comparison, the cellular IC50 of AG490 was 15–20 μM). This correlated with an increase in the percentage of apoptotic cells, as evaluated by Apo2.7 staining after 48 hours. Importantly, INA-6 growth was inhibited in the presence of bone marrow stromal cells accompanied by a decrease in phospho-STAT3 levels. Furthermore, in a subcutaneous INA-6-SCID model, INCB20 inhibited tumor growth (and phosphorylated STAT3) in a dose-dependent manner. Our studies provide the conceptual basis for the use of JAK inhibitors as a therapeutic approach in MM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3714-3714 ◽  
Author(s):  
Lei Wu ◽  
Peter Schafer ◽  
George Muller ◽  
David Stirling ◽  
J. Blake Bartlett

Abstract Lenalidomide (Revlimid® is approved for the treatment of transfusion-dependent patients with anemia due to low- or intermediate-1-risk MDS associated with a del 5q cytogenetic abnormality with or without additional cytogenetic abnormalities, and in combination with dexamethasone is for the treatment of multiple myeloma patients who have received at least one prior therapy. Encouraging early results suggest a potential for clinical efficacy in B cell non-Hodgkin’s lymphoma (NHL). Potential mechanisms of action include anti-angiogenic, anti-proliferative and immunomodulatory activities. Lenalidomide has been shown to enhance Th1-type cytokines and T cell and NK cell activation markers in patients with advanced cancers. Furthermore, lenalidomide has been shown to enhance rituximab-mediated protection in a SCID mouse lymphoma model in vivo. We have utilized an in vitro ADCC system to assess the ability of lenalidomide to directly enhance human NK cell function in response to therapeutic antibodies, such as rituximab (chimeric anti-CD20 mAb). Isolated NK cells produced little or no IFN-γ in response to IgG and/or IL-2 or IL-12. However, pre-treatment of NK cells with lenalidomide greatly enhanced IFN-γ production by NK cells in a dose-dependent manner. In a functional ADCC assay, NHL cell lines (Namalwa, Farage & Raji) were pre-coated with rituximab and exposed to NK cells pre-treated with lenalidomide in the presence of either exogenous IL-2 or IL-12. After 4 hours in culture the viability of the tumor cells was assessed. Lenalidomide consistently and synergistically increased the killing of tumor cells in a dose-dependent manner and up to >4-fold compared to rituximab alone. Rituximab alone had only a small effect in this model and there was no killing of cells in the absence of rituximab. The presence of either exogenous IL-2 or IL-12 was required to see enhanced killing by lenalidomide. In cancer patients lenalidomide has been shown to increase serum IL-12 levels and is also known to induce IL-2 production by T cells in vitro. Potential mechanisms for enhanced ADCC include increased signaling through NK FCγ receptors and/or IL-2 or IL-12 receptors. However, we found that these receptors are unaffected by lenalidomide, although downstream effects on NK signaling pathways are likely and are being actively investigated. In conclusion, we have shown that lenalidomide strongly enhances the ability of rituximab to induce ADCC mediated killing of NHL cells in vitro. This provides a strong rationale for combination of these drugs in patients with NHL and CLL.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1831-1831 ◽  
Author(s):  
Michael Mangone ◽  
Luigi Scotto ◽  
Enrica Marchi ◽  
Owen A. O'Connor ◽  
Hearn J. Cho

Abstract Abstract 1831 Multiple myeloma (MM) is the second most common hematologic malignancy. Although there are effective new agents that can induce remission, relapse is inevitable and the disease is currently incurable. Progress in the treatment of this disease demands development of novel therapeutics and identification of functional biomarkers that may be used to distinguish tumors that are susceptible to specific targeted agents, creating a “personalized” therapeutic strategy for individual patients. We investigated these principles with anti-folates, which are not commonly used in MM but have demonstrated activity in this disease. Pralatrexate (PDX, 10-propargyl 10-deazaaminopterin) is a folate analogue that was rationally designed to have high affinity for Reduced Folate Carrier (RFC)-1, an oncofetal protein expressed in many cancers that actively transports folates into cells. PDX induced dose-dependent apoptotic cell death in a subset of human myeloma cell lines (HMCL) and CD138+ MM cells isolated from a clinical specimen. In sensitive cell lines, PDX exhibited 10-fold greater potency compared to the structurally related drug methotrexate (MTX). PDX induced dose-dependent, intrinsic apoptosis in sensitive HMCLs, characterized by cleavage of caspase-3 and -9 and accompanied by the loss of full-length Mcl-1, a Bcl-2 family protein that plays a critical role in drug-induced apoptosis in MM. Furthermore, the activity of PDX is not abrogated by the presence of exogenous interleukin-6 or by co-culture with HS-5 bone marrow stromal cells, both of which exert powerful survival effects on MM cells and can antagonize apoptosis in response to some cytotoxic chemotherapy drugs. Sensitivity to PDX-induced apoptosis correlated with higher relative levels of RFC-1 mRNA in sensitive compared to resistant HMCL. Resistant HMCL also exhibited a dose-dependent up-regulation of dihydrofolate reductase (DHFR) protein, a primary molecular target for anti-folates, in response to PDX exposure, whereas sensitive HMCL did not. These changes in functional folate metabolism biomarkers, high baseline RFC-1 expression and upregulation of DHFR in response to PDX, appeared to be mutually exclusive to sensitive or resistant HMCL, respectively. Importantly, PDX was also effective against sensitive HMCL in vivo in a novel mouse xenograft model. NOD/Shi-scid/IL-2Rγnull (NOG) mice were inoculated with MM.1s HMCL stably transduced to express both GFP and luciferase (GFP-luc). GFP-luc MM.1s cells engrafted into the long bones, pelvis, and vertebral column of NOG mice within 4–7 days after injection of cells, as assessed by in vivo bioluminescent imaging. Treatment with PDX resulted in a significant reduction in tumor burden after two doses. These results demonstrate that PDX has potent anti-myeloma activity in vitro and in vivo, and that RFC-1 expression and DHFR upregulation are robust functional biomarkers that may identify patients who are likely to benefit from PDX therapy. These data support further exploration of PDX therapy in clinical trials for MM and investigation of folate metabolism biomarkers as indices for treatment with this class of drugs. Improved anti-folates such as PDX are a promising class of agents that may be a valuable addition to the arsenal against MM. Disclosures: O'Connor: Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document