scholarly journals Interleukin 2 stimulates chronic lymphocytic leukemia colony formation in vitro

Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 237-240 ◽  
Author(s):  
I Touw ◽  
B Lowenberg

Abstract The requirements of clonogenic cells of B cell-type chronic lymphocytic leukemia (B CLL) for interleukin 2 (IL 2) were analyzed. Using the cells of five patients, we measured IL 2 receptor expression on the cell surface and the colony-forming abilities of the cells in response to IL 2. In four of the cases, significant percentages of the CLL cells expressed IL 2 membrane receptors (as assessed with the monoclonal antibody anti-Tac), indicative of their potential sensitivity to IL 2. Pure recombinant interleukin 2 (r-IL2) was added to colony cultures that also contained the lectin phytohemagglutinin (PHA) or the phorbol ester 12–0-tetradecanoylphorbol-13-acetate (TPA) to activate the CLL cells. Colony formation completely depended on the presence of r-IL 2 and PHA or TPA in culture, with the exception of one case, in which the addition of IL 2 was not required for colony growth in TPA-supplemented cultures. Twenty-five to fifty units of r-IL 2 per milliliter of culture medium provided optimal stimulation. Under these conditions, a linear relationship was observed between plated cell numbers and colony numbers formed. Morphological and immunologic analysis of colony cells indicated that these were monoclonal CLL cells that had matured toward plasmacellular lymphocytes and plasma cells.

Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 237-240
Author(s):  
I Touw ◽  
B Lowenberg

The requirements of clonogenic cells of B cell-type chronic lymphocytic leukemia (B CLL) for interleukin 2 (IL 2) were analyzed. Using the cells of five patients, we measured IL 2 receptor expression on the cell surface and the colony-forming abilities of the cells in response to IL 2. In four of the cases, significant percentages of the CLL cells expressed IL 2 membrane receptors (as assessed with the monoclonal antibody anti-Tac), indicative of their potential sensitivity to IL 2. Pure recombinant interleukin 2 (r-IL2) was added to colony cultures that also contained the lectin phytohemagglutinin (PHA) or the phorbol ester 12–0-tetradecanoylphorbol-13-acetate (TPA) to activate the CLL cells. Colony formation completely depended on the presence of r-IL 2 and PHA or TPA in culture, with the exception of one case, in which the addition of IL 2 was not required for colony growth in TPA-supplemented cultures. Twenty-five to fifty units of r-IL 2 per milliliter of culture medium provided optimal stimulation. Under these conditions, a linear relationship was observed between plated cell numbers and colony numbers formed. Morphological and immunologic analysis of colony cells indicated that these were monoclonal CLL cells that had matured toward plasmacellular lymphocytes and plasma cells.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1667-1673 ◽  
Author(s):  
I Touw ◽  
L Dorssers ◽  
B Lowenberg

Abstract To determine the growth properties of B cell chronic lymphocytic leukemia (B CLL) and to identify possible abnormalities thereof, we examined the in vitro action of interleukin 2 (IL2) in four patients. Using radiolabeled IL2 and monoclonal antibodies reactive with IL2 membrane receptors we show that CLL cells, after their activation in vitro, express IL2 receptors of a high- as well as a low-affinity type, exactly as has been reported for normal T and B blasts. In three of the four reported cases, CLL proliferation (measured with 3H-thymidine incorporation) depended on the addition of phytohemagglutinin (PHA) to activate the cells and IL2 (optimal concentration, 10 to 100 U IL2/mL). In contrast, the cells of the fourth case of CLL (CLL-4) proliferated in an autonomous fashion, ie, without a need for PHA and IL2 in culture. Specific blocking of the IL2-binding sites with anti-IL2 receptor monoclonal antibodies almost completely inhibited the proliferation of these cells, which indicated that functional IL2 receptors were required for the autonomous proliferation. The demonstration of low concentrations of IL2 activity in the culture medium conditioned by the cells suggests that endogenous IL2 had been responsible for the spontaneous 3H-thymidine uptake by the CLL cells of patient 4. However, we were unable to extract IL2 mRNA from the cells (neither fresh nor after various in vitro incubations) in quantities detectable by Northern blot analysis that would prove that the CLL cells of patient 4 were actively synthesizing IL2 during culture. Thus, individual cases of B CLL are subject to variable growth regulation involving functional IL2 receptors on the cell surface: after activation with PHA the cells respond to exogenous IL2 in a fashion similar to normal B lymphocytes, or the cells are stimulated by endogenous IL2 (or an IL2-like activity) and do not require activation with PHA.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610 ◽  
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

Abstract To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1667-1673 ◽  
Author(s):  
I Touw ◽  
L Dorssers ◽  
B Lowenberg

To determine the growth properties of B cell chronic lymphocytic leukemia (B CLL) and to identify possible abnormalities thereof, we examined the in vitro action of interleukin 2 (IL2) in four patients. Using radiolabeled IL2 and monoclonal antibodies reactive with IL2 membrane receptors we show that CLL cells, after their activation in vitro, express IL2 receptors of a high- as well as a low-affinity type, exactly as has been reported for normal T and B blasts. In three of the four reported cases, CLL proliferation (measured with 3H-thymidine incorporation) depended on the addition of phytohemagglutinin (PHA) to activate the cells and IL2 (optimal concentration, 10 to 100 U IL2/mL). In contrast, the cells of the fourth case of CLL (CLL-4) proliferated in an autonomous fashion, ie, without a need for PHA and IL2 in culture. Specific blocking of the IL2-binding sites with anti-IL2 receptor monoclonal antibodies almost completely inhibited the proliferation of these cells, which indicated that functional IL2 receptors were required for the autonomous proliferation. The demonstration of low concentrations of IL2 activity in the culture medium conditioned by the cells suggests that endogenous IL2 had been responsible for the spontaneous 3H-thymidine uptake by the CLL cells of patient 4. However, we were unable to extract IL2 mRNA from the cells (neither fresh nor after various in vitro incubations) in quantities detectable by Northern blot analysis that would prove that the CLL cells of patient 4 were actively synthesizing IL2 during culture. Thus, individual cases of B CLL are subject to variable growth regulation involving functional IL2 receptors on the cell surface: after activation with PHA the cells respond to exogenous IL2 in a fashion similar to normal B lymphocytes, or the cells are stimulated by endogenous IL2 (or an IL2-like activity) and do not require activation with PHA.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 556-561 ◽  
Author(s):  
I Touw ◽  
R Delwel ◽  
R Bolhuis ◽  
G van Zanen ◽  
B Lowenberg

Abstract The role of interleukin 2 (IL 2) as a possible regulator of in vitro proliferation and differentiation of non-T acute lymphoblastic leukemia (ALL) cells was investigated. For this purpose, leukemic cells from the blood or bone marrow of eight untreated patients with common or pre-B ALL were analyzed using the anti-Tac monoclonal antibody (reactive with the IL 2 receptor) in indirect immunofluorescence. The receptors for IL 2, which were initially absent from the cell surface, were induced on high percentages of the ALL cells after the in vitro exposure to the lectin phytohemagglutinin or the phorbol ester 12-O- tetradecanoylphorbol-13-acetate in six patients, suggesting that the cells had become sensitive to IL 2. In colony cultures to which feeder leukocytes and IL 2 had been added, colony growth was obtained in five of eight cases. Whereas the cells from one patient formed colonies in the absence of exogenous stimuli, the cells from others were dependent on the addition of feeder leukocytes plus IL 2. In the latter cases, feeder leukocytes alone, releasing some IL 2, stimulated growth suboptimally at different cell concentrations. Their stimulative effect was significantly enhanced when leukocyte-derived IL 2 or pure recombinant IL 2 was supplemented. Alone, IL 2 (up to 500 U/mL) did not support colony formation. Apparently, IL 2 and feeder leukocytes are both required for the induction of colonies in these cases of ALL. From cell sorting of fluorescent anti-common ALL antigen (CALLA) stained cells it appeared that colonies descended from cells with high as well as low or negative CALLA expression. Immunophenotyping demonstrated the presence of the original leukemia markers on colony cells, but was not indicative of maturation of ALL toward more differentiated B cells. We suggest that IL 2 can stimulate the in vitro proliferation of certain neoplastic B lymphocyte progenitors.


Blood ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 1022-1029 ◽  
Author(s):  
N Chaouchi ◽  
C Wallon ◽  
C Goujard ◽  
G Tertian ◽  
A Rudent ◽  
...  

Human interleukin-13 (IL-13) acts at different stages of the normal B- cell maturation pathway with a spectrum of biologic activities overlapping those of IL-4. B chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of slow-dividing and long-lived monoclonal B cells, arrested at the intermediate stage of their differentiation. In vitro, B-CLL cells exhibit a spontaneous apoptosis regulated by different cytokines. In this report, we show that IL-13 (10 to 200 ng/mL) acts directly on monoclonal B-CLL cells from 12 patients. (1) IL-13 enhances CD23 expression and induces soluble CD23 secretion by B-CLL cells but does not exhibit a growth factor activity. (2) IL-13 inhibits IL-2 responsiveness of B-CLL cells, activated either with IL-2 alone or through crosslinking of lgs or ligation of CD40 antigen. (3) IL-13 protects B-CLL cells from in vitro spontaneous apoptosis. The effects of IL-13 on neoplasic B cells were slightly less than those of IL-4 and occurred independently of the presence of IL-4. The present observations show that IL-13 may exhibit a negative regulatory effect on neoplasic B cells in contrast with that observed in normal B cells, and suggest that IL-13 could be an important factor in the pathogenesis of CLL by preventing the death of monoclonal B cells. Moreover, B-CLL may be an interesting model to study the regulation of the expression of IL-13 receptor and/or signal transduction pathways.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1199-1206 ◽  
Author(s):  
Simona Zupo ◽  
Rosanna Massara ◽  
Mariella Dono ◽  
Edoardo Rossi ◽  
Fabio Malavasi ◽  
...  

Previously, we demonstrated that B-chronic lymphocytic leukemia (B-CLL) cells could be divided into 2 groups depending on the expression of CD38 by the malignant cells. The 2 groups differed in their signal-transducing capacities initiated by cross-linking of surface IgM; only in CD38-positive cells was an efficient signal delivered, invariably resulting in cell apoptosis. In this study, we investigated the effect of surface IgD cross-linking in 10 patients with CD38-positive B-CLL. Exposure of the malignant cells to goat antihuman δ-chain antibodies (Gaδ-ab) caused [Ca++]i mobilization and tyrosine kinase phosphorylation in a manner not different from that observed after goat antihuman μ-chain antibody (Gaμ-ab) treatment in vitro. However, Gaδ-ab-treated cells failed to undergo apoptosis and instead displayed prolonged survival in culture and differentiated into plasma cells when rIL2 was concomitantly present. Cross-linking of surface IgD failed to induce proliferation of the malignant cells in vitro. Moreover, treatment with Gaδ-ab did not prevent apoptosis of B-CLL cells induced by Gaμ-ab. Collectively, these experiments demonstrated that IgM and IgD expressed by the same cell may deliver opposite signals under particular circumstances and provide some clues for the understanding of the pathophysiology of B-CLL.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1025-1032 ◽  
Author(s):  
LG Larsson ◽  
M Schena ◽  
M Carlsson ◽  
J Sallstrom ◽  
K Nilsson

Abstract The translocated c-myc oncogene in Burkitt's lymphoma (BL) and murine plasmacytoma (MPC) has been proposed to be expressed at a stage of differentiation at which the gene is normally silent, resulting in a continuous proliferation and an inhibited terminal differentiation. To determine whether c-myc is differently expressed at the various stages of the differentiation pathway, we used B-type chronic lymphocytic leukemia (B-CLL) cells, representing resting B lymphocytes, inducible to proliferation and/or differentiation in vitro. The c-myc protein, and Ig lambda-light chain and PCA-1 antigen as markers of B-cell maturation, were analyzed in single, morphologically defined cells by immunocytochemical double-staining. The proliferation of individual cells was determined by 3H-thymidine incorporation and by analysis of Ki-67 antigen expression. The results show that the level of c-myc expression correlates to the stage of differentiation and to the proliferative activity. Uninduced resting cells did not express c-myc. The c-myc protein was observed in the highest amount at the proliferative B-lymphoblast stage of maturation and was reduced in plasmablasts and undetectable in plasma cells. The results suggest that maturation of B cells into nonproliferative, terminally differentiated plasma cells is associated with a downregulated c-myc expression and thus support the view that the deregulated c-myc gene in BL and MPC is expressed at an inappropriate stage of maturation and thereby inhibits terminal differentiation.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1242-1246 ◽  
Author(s):  
W Digel ◽  
M Stefanic ◽  
W Schoniger ◽  
C Buck ◽  
A Raghavachar ◽  
...  

Abstract The biologic effects of recombinant tumor necrosis factor-alpha (rTNF- alpha) and the expression of specific TNF membrane receptors on isolated neoplastic B cells from previously untreated patients with chronic lymphocytic leukemia (CLL) were investigated in vitro. Isolated B cells were incubated up to six days with various concentrations of rTNF-alpha (0.1 to 100 ng/mL). B cells from most patients proliferated ranged from two to 104 times that of unstimulated cells from the same patients. An optimal proliferative effect was achieved at 25 ng/mL rTNF- alpha and an incubation time between 96 and 120 hours, whereas a low concentration of rTNF-alpha (1 ng/mL) reduced [3H]TdR incorporation in four cases. Metaphase cells were detected in the rTNF-alpha-stimulated cultures that proliferated in response to rTNF-alpha. B cells from three of ten patients proliferated spontaneously and proliferation was further enhanced in two patients by rTNF-alpha. TNF binding assays gave a value of approximately 390 to 1,400 binding sites/cell for TNF and a dissociation constant (kd) of approximately 60 pmol/L. These data indicate that rTNF-alpha, in contrast to its cytotoxic/cytostatic effects, can also induce proliferation of tumor cells.


Sign in / Sign up

Export Citation Format

Share Document