scholarly journals Associated chronic lymphocytic leukemia and multiple myeloma: origin from a single clone

Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 291-293
Author(s):  
JP Fermand ◽  
JM James ◽  
P Herait ◽  
JC Brouet

We investigated the clonal relationship of malignant cells in a patient affected with both chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). CLL cells and malignant plasma cells synthesized IgG1 kappa and IgA kappa molecules, respectively; these monoclonal Ig shared idiotypic determinants, providing evidence that a single clonal disease occurred in this patient. Furthermore, when leukemic CLL cells were driven to differentiate in vitro to immunoblasts and plasma cells, a switch from IgG to IgA occurred in a significant percentage of cells that were double producers. These data suggest that, in some circumstances, CLL leukemic B cells may reach a more mature state, leading to the occurrence of clinical MM.

Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 291-293 ◽  
Author(s):  
JP Fermand ◽  
JM James ◽  
P Herait ◽  
JC Brouet

Abstract We investigated the clonal relationship of malignant cells in a patient affected with both chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). CLL cells and malignant plasma cells synthesized IgG1 kappa and IgA kappa molecules, respectively; these monoclonal Ig shared idiotypic determinants, providing evidence that a single clonal disease occurred in this patient. Furthermore, when leukemic CLL cells were driven to differentiate in vitro to immunoblasts and plasma cells, a switch from IgG to IgA occurred in a significant percentage of cells that were double producers. These data suggest that, in some circumstances, CLL leukemic B cells may reach a more mature state, leading to the occurrence of clinical MM.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1199-1206 ◽  
Author(s):  
Simona Zupo ◽  
Rosanna Massara ◽  
Mariella Dono ◽  
Edoardo Rossi ◽  
Fabio Malavasi ◽  
...  

Previously, we demonstrated that B-chronic lymphocytic leukemia (B-CLL) cells could be divided into 2 groups depending on the expression of CD38 by the malignant cells. The 2 groups differed in their signal-transducing capacities initiated by cross-linking of surface IgM; only in CD38-positive cells was an efficient signal delivered, invariably resulting in cell apoptosis. In this study, we investigated the effect of surface IgD cross-linking in 10 patients with CD38-positive B-CLL. Exposure of the malignant cells to goat antihuman δ-chain antibodies (Gaδ-ab) caused [Ca++]i mobilization and tyrosine kinase phosphorylation in a manner not different from that observed after goat antihuman μ-chain antibody (Gaμ-ab) treatment in vitro. However, Gaδ-ab-treated cells failed to undergo apoptosis and instead displayed prolonged survival in culture and differentiated into plasma cells when rIL2 was concomitantly present. Cross-linking of surface IgD failed to induce proliferation of the malignant cells in vitro. Moreover, treatment with Gaδ-ab did not prevent apoptosis of B-CLL cells induced by Gaμ-ab. Collectively, these experiments demonstrated that IgM and IgD expressed by the same cell may deliver opposite signals under particular circumstances and provide some clues for the understanding of the pathophysiology of B-CLL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3893-3893
Author(s):  
Daniel Mertens ◽  
Nupur Bhattacharya ◽  
Sarah Häbe ◽  
Hartmut Döhner ◽  
Stephan Stilgenbauer

Abstract Abstract 3893 Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental input for their extended survival in vivo, but the underlying molecular mechanism is still unclear. Compared to non-malignant B-cells, CLL cells are more responsive to contact dependent complex stimuli like coculture on bone marrow derived stromal cell lines of both human (p<0.0001) and murine origin (p<0.01), but also to soluble factors (human conditioned medium p<0.0001, murine conditioned medium p<0.001, all student′s t-test). In order to understand the intrinsic difference of the anti-apoptotic phenotype of CLL cells, the signalling circuitry of the malignant cells was modelled. Compared to candidate ligands like SDF-1 (at concentrations between 10–1000ng/ml), BAFF (250–1000ng/ml), APRIL (250–1000ng/ml) and soluble anti-IgM (1–25μg/ml), the factors CD40L (10–2000ng/ml) and IL4 (0.1–10ng/ml) were the most efficient ligands in rescuing CLL cells from spontaneous death in vitro. The dose response of IL4 and CD40L displayed different saturation and cooperativity between CLL cells and non-malignant B-cells. Using IL4, saturation was reached both for CLL cells and B-cells at 0.2pM, but at 52% survival (+/− 8%) for CLL cells and 28% (+/−7%) for B-cells, and the estimated dissociation constant Kd was 0.01pM for both ligands. For CD40L, CLL cell survival reached saturation at 40nM, while no saturation was reached for B-cells. Intriguingly, B-cells showed cooperativity in their response to CD40L, with a cooperativity coefficient of 2.0 and a Kd of 70pM, while cooperativity for CD40L was lost in CLL cells (Kd of only 2.6pM). This pointed towards distinct differences in ligand-receptor interactions or in downstream signaling between CLL cells and non-malignant B-cells. However, high-throughput spatial analysis with a microscope-coupled cytometer did not show differences of receptor quantity or receptor distribution between malignant and non-malignant cells. In contrast, quantity and phosphorylation levels of downstream signalling nodes like STAT6 (measured by flow cytometry and validated by Western-blot) and the activity of NF-kB (p65 binding to DNA measured by oligonucleotide-coupled ELISA) were higher in CLL cells compared to B-cells from healthy donors. Therefore, the defect in IL4 and CD40L signalling that leads to an enhanced survival in CLL cells is likely caused by changes in the intracellular circuitry. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2755-2763 ◽  
Author(s):  
Wee J. Chng ◽  
Roelandt F. Schop ◽  
Tammy Price-Troska ◽  
Irene Ghobrial ◽  
Neil Kay ◽  
...  

Abstract Waldenström macroglobulinemia (WM) is a B-cell malignancy characterized by the ability of the B-cell clone to differentiate into plasma cells. Although the clinical syndrome and the pathologic characteristics are well defined, little is known about its biology and controversy still exists regarding its cell of origin. In this gene-expression study, we compared the transcription profiles of WM with those of other malignant B cells including (chronic lymphocytic leukemia [CLL] and multiple myeloma [MM]) as well as normal cells (peripheral-blood B cells and bone marrow plasma cells). We found that WM has a homogenous gene expression regardless of 6q deletion status and clusters with CLL and normal B cells on unsupervised clustering with very similar expression profiles. Only a small gene set has expression profiles unique to WM compared to CLL and MM. The most significantly up-regulated gene is IL6 and the most significantly associated pathway for this set of genes is MAPK signaling. Thus, IL6 and its downstream signaling may be of biologic importance in WM. Further elucidation of the role of IL-6 in WM is warranted as this may offer a potential therapeutic avenue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 45-50 ◽  
Author(s):  
LF Bertoli ◽  
H Kubagawa ◽  
GV Borzillo ◽  
M Mayumi ◽  
JT Prchal ◽  
...  

Abstract A murine monoclonal antibody made against an idiotypic determinant (Id) of surface IgM/IgD lambda molecules on chronic lymphocytic leukemia (CLL) cells of a 71-year-old woman was used for clonal analysis by two- color immunofluorescence. The anti-Id antibody identified IgM+/IgD+/lambda+ B cells as the predominant cell type of her CLL clone. In addition, substantial proportions of the IgG and IgA B cells and most of the IgM plasma cells in her bone marrow and blood were Id+. Six years after diagnosis, the patient died of respiratory failure due to infiltration of lungs by malignant cells. Autopsy revealed a dramatic change in the tumor cell morphology. The lungs, hilar nodes, and liver were infiltrated by a diffuse large cell lymphoma admixed with the leukemic cells. By immunohistologic staining these anaplastic lymphoma cells were IgM+/IgD-/lambda+ B cells expressing the same Id noted earlier on the CLL cells. The immunoglobulin gene rearrangement pattern on Southern blot analysis was also the same in leukemic blood cells and in the tissues involved by the lymphoma. Thus, the combination of antiidiotype and immunoglobulin gene analyses in this patient with Richter's syndrome revealed that a CLL clone, seemingly “frozen” in differentiation, was actually undergoing isotype switching, differentiation into plasma cells, and evolution into a rapidly growing and fetal lymphoma.


Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 180-191 ◽  
Author(s):  
R Greil ◽  
B Fasching ◽  
P Loidl ◽  
H Huber

Abstract The c-myc gene plays a pivotal role in mediating the competence state for cell cycle transversion. This biologic role is in contradiction to reports of elevated expression of the gene in multiple myeloma, a tumor with restricted self-renewal capacity. To more clearly define the role of this gene in plasma cells of myeloma patients, c-myc messenger RNA (mRNA) and/or oncoprotein expression were semiquantitatively analyzed on the single cell level in 19 cases of multiple myeloma, among them 1 biclonal case and 1 case with coexistent chronic lymphocytic leukemia (CLL). Performing anti-sense/mRNA in situ hybridization, mature c-myc gene transcripts were detected in 92% (12 of 13) of cases and could definitely be attributed to the plasma cells by our study. The number of Ki 67-positive plasma cells actively passing the cell cycle was less than 1% and independent of c-myc gene expression. However, because the presence of the 152-c-MYC epitope was correlated to extent of marrow plasmacytosis (r = .64; P = .043) and content of plasmablasts (P = .09), the c-myc gene might serve a function different from proliferative activity, but also associated with tumor cell mass. In CLL cells (21 of 22 cases) and their benign counterparts, ie, bone marrow and peripheral blood lymphocytes, the anti-sense/c-myc mRNA hybridization signals remained below the threshold considered as cutpoint between negative and positive. The low amounts of c-myc transcripts were correlated to neither stage of disease (P = .52) nor lymphocyte counts (P = .24). Because the numbers of peripheral blood lymphoma cells were independent of tumor mass and of c-myc gene transcripts expressed, peripheral blood lymphocytosis might more likely reflect homing processes than proliferative activity in CLL.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
1978 ◽  
Vol 52 (3) ◽  
pp. 532-536 ◽  
Author(s):  
RH Kough ◽  
AZ Makary

Abstract Two cases of multiple myeloma (MM) developed late in the course of chronic lymphocytic leukemia (CLL). An 81-yr-old white female developed, after 6 yr of CLL, IgAk MM with sheets of plasma cells abutting sheets of lymphocytes in the bone marrow, multiple pathologic fractures, and 0.26 g/24 free k light chains in the urine. A 74-yr-old white male developed, after 16 yr of CLL, k light chain MM with 20% plasma cells in the bone marrow, multiple panthologic fractures, and 3.7 g/24 hr free k light chains in the urine. In both cases the CLL had responded well to intermittent low-dose chlorambucil therapy, but the MM failed to respond to cyclic melphalanprednisone therapy. A review of 105 cases of CLL seen at the Geisinger Medical Center failed to turn up any other cases of MM developing during the course of CLL. The suggestion that there is an increased prevalence of MM in CLL is an attractive one because both diseases are B cell neoplasms and because of the increased frequency of asymptomatic monoclonal gammopathies in CLL found by others.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Sign in / Sign up

Export Citation Format

Share Document