scholarly journals A monoclonal antibody preventing binding of tissue-type plasminogen activator to fibrin: useful to monitor fibrinogen breakdown during t-PA infusion

Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1482-1487
Author(s):  
P Holvoet ◽  
HR Lijnen ◽  
D Collen

One (MA-1C8) of 36 monoclonal antibodies obtained by fusion of P3X63- Ag8–6.5.3 myeloma cells with spleen cells of mice immunized with purified human tissue-type plasminogen activator (t-PA) blocked the activity of t-PA on fibrin plates but not on chromogenic substrates. MA- 1C8 at a concentration of 200 micrograms/mL inhibited plasma clot lysis and binding of t-PA to the clot. MA-1C8 had no influence on the activation of plasminogen by t-PA, which obeys Michaelis-Menten kinetics with Km = 105 mumol/L and kcat = 0.05 s-1; however, it abolished the influence of CNBr-digested fibrinogen on Km. These findings confirm that the stimulatory effect of fibrin on the activation of plasminogen by t-PA is mediated by binding of t-PA to fibrin and provide additional support for the kinetic model. Addition of t-PA to pooled fresh human plasma to a concentration of 5 micrograms/mL resulted in extensive fibrinogen breakdown after incubation for one hour at 37 degrees C or during storage at -20 degrees C for one day. In both instances, fibrinogen degradation was completely prevented by addition of MA-1C8 to a concentration of 200 micrograms/mL of plasma. MA-1C8 also effectively prevented in vitro fibrinogen degradation and in vitro plasminogen activation in plasma samples obtained during infusion of recombinant t-PA in patients with thromboembolic disease. Thus, MA-1C8 is a useful tool for discriminating between in vivo and in vitro fibrinolysis during thrombolytic therapy with t-PA.

Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1482-1487 ◽  
Author(s):  
P Holvoet ◽  
HR Lijnen ◽  
D Collen

Abstract One (MA-1C8) of 36 monoclonal antibodies obtained by fusion of P3X63- Ag8–6.5.3 myeloma cells with spleen cells of mice immunized with purified human tissue-type plasminogen activator (t-PA) blocked the activity of t-PA on fibrin plates but not on chromogenic substrates. MA- 1C8 at a concentration of 200 micrograms/mL inhibited plasma clot lysis and binding of t-PA to the clot. MA-1C8 had no influence on the activation of plasminogen by t-PA, which obeys Michaelis-Menten kinetics with Km = 105 mumol/L and kcat = 0.05 s-1; however, it abolished the influence of CNBr-digested fibrinogen on Km. These findings confirm that the stimulatory effect of fibrin on the activation of plasminogen by t-PA is mediated by binding of t-PA to fibrin and provide additional support for the kinetic model. Addition of t-PA to pooled fresh human plasma to a concentration of 5 micrograms/mL resulted in extensive fibrinogen breakdown after incubation for one hour at 37 degrees C or during storage at -20 degrees C for one day. In both instances, fibrinogen degradation was completely prevented by addition of MA-1C8 to a concentration of 200 micrograms/mL of plasma. MA-1C8 also effectively prevented in vitro fibrinogen degradation and in vitro plasminogen activation in plasma samples obtained during infusion of recombinant t-PA in patients with thromboembolic disease. Thus, MA-1C8 is a useful tool for discriminating between in vivo and in vitro fibrinolysis during thrombolytic therapy with t-PA.


1987 ◽  
Author(s):  
R S Rappaport ◽  
M R Blume ◽  
R L Vogel ◽  
M H Levner ◽  
P P Hung

There is mounting evidence from animal models and the clinic that combination thrombolytic therapy with tissue-type plasminogen activator (tPA) and single chain urokinase (scuPA) is synergistic. Yet, efforts to demonstrate synergism between these two plasminogen activators in vitro have met with discordant results. Collen et al (Thromb. Haemostasis, 56:35, 1986) reported an absence of synergism between these two agents on clot lysis in an in vitro plasma milieu when they were evaluated at molar ratios of 1:4 (tPA:scuPA and vice versa). Gurewich and Pannell (Thromb. Res., 44:217, 1986), however, reported a synergistic effect on fibrin-specific clot lysis in vitro when the agents were combined in concentrations exceeding molar ratios of 1:4 (tPA:scuPA). Here, we present evidence that synergism between tPA and scuPA may be demonstrated in vitro provided that the molar ratio of tPA to scuPA exceeds 1:4 and that the concentration of clot bound or unbound tPA is minimized. In order to achieve this experimental condition, the standard in vitro plasma clot lysis assay was modified. Human plasma clots were incubated first for a short time in plasma containing varying amounts of tPA. After incubation, the clots were washed thoroughly and reimmersed in plasma alone or in plasma containing varying amounts of scuPA or tPA. Under these conditions, lysis proceeded at a greater rate and to a greater extent when tPA clots were immersed in plasma containing an appropriate amount of scuPA than when they were immersed in plasma alone or in plasma containing appropriate amounts of tPA. Lysis of untreated clots or clots exposed first to scuPA and then to plasma containing varying amounts of scuPA proceeded far less efficiently with a characteristic lag. The enhanced lysis produced by tPA and scuPA obeyed the classical definition of synergy: the same biological effect can be obtained with two drugs together at algebraic fractional combinations of less than 1 (Berenbaum, M.C., Clin. Exp. Immunol., 28:1-18, 1977). Thus, conditions that more closely mimic the in vivo situation resulting from a bolus injection of tPA followed by infusion with scuPA, may provide a system for duplication of in vivo synergism in. vi tro and investigation of the mechanism thereof.


Blood ◽  
1992 ◽  
Vol 79 (6) ◽  
pp. 1420-1427 ◽  
Author(s):  
S Kunitada ◽  
GA FitzGerald ◽  
DJ Fitzgerald

Tissue-type plasminogen activator (t-PA) is less active in vivo and in vitro against clots that are enriched in platelets, even at therapeutic concentrations. The release of radioactivity from 125I-fibrin-labeled clots was decreased by 47% 6 hours after the addition of t-PA 400 U/mL when formed in platelet-rich versus platelet-poor plasma. This difference was not due to the release of plasminogen activator inhibitor-1 (PAI-1) by platelets. Thus, the fibrinolytic activity of t- PA in the supernatant was similar in the two preparations and fibrin autography demonstrated only a minor degree of t-PA-PAI-1 complex formation. Furthermore, a similar platelet-dependent reduction in clot lysis was seen with a t-PA mutant resistant to inhibition by PAI-1. The reduction in t-PA activity correlated with a decrease in t-PA binding to platelet-enriched clot (60% +/- 3% v platelet-poor clot, n = 5). This reduction in binding was also shown using t-PA treated with the chloromethylketone, D-Phe-Pro-Arg-CH2Cl (PPACK) (36% +/- 13%, n = 3), and with S478A, a mutant t-PA in which the active site serine at position 478 has been substituted by alanine (43% +/- 6%, n = 3). In contrast, fixed platelets and platelet supernatants had no effect on the binding or lytic activity of t-PA. Pretreatment with cytochalasin D 1 mumol/L, which inhibits clot retraction, also abolished the platelet- induced inhibition of lysis and t-PA binding by platelets. These data suggest that platelets inhibit clot lysis at therapeutic concentrations of t-PA as a consequence of clot retraction and decreased access of fibrinolytic proteins.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1347-1352 ◽  
Author(s):  
ET Fry ◽  
BE Sobel

Abstract Coronary thrombolysis with t-PA is generally implemented with concomitant administration of heparin. However, results of studies in vitro suggest that heparin competes with fibrin for binding of tissue- type plasminogen activator (t-PA), augments activation of free plasminogen, decreases fibrin specificity, and impairs thrombolysis. To define the biological implications of these observations, we characterized effects of therapeutic concentrations of heparin on the binding of t-PA to thrombi formed in whole blood, effects of heparin on activation of plasminogen by t-PA in plasma, and effects of heparin on thrombolysis induced by t-PA in a clot lysis system designed to simulate conditions in vivo. The amount of t-PA bound to thrombi was not affected by heparin (0, 0.5, 1.0, and 5.0 U/mL). When t-PA activity was selectively and irreversibly inhibited by D-Phe-Pro-Arg- chloromethyl ketone (PPACK) the amount of t-PA-PPACK bound was similarly unaffected by heparin. Thrombolysis measured by 125I- fibrin(ogen) release and by reduction of mass of thrombi were not altered by heparin. Heparin did not affect plasminogen consumption induced by t-PA. Plasma concentrations of alpha-2-antiplasmin after exposure of blood to t-PA were less depressed with increasing concentrations of heparin. Thus, heparin in therapeutic concentrations does not interfere with binding of t-PA to thrombi, augment activation of free plasminogen, or inhibit thrombolysis. Accordingly, it appears likely that concomitant administration of heparin will not impair thrombolysis with t-PA implemented clinically.


Blood ◽  
1992 ◽  
Vol 79 (6) ◽  
pp. 1420-1427 ◽  
Author(s):  
S Kunitada ◽  
GA FitzGerald ◽  
DJ Fitzgerald

Abstract Tissue-type plasminogen activator (t-PA) is less active in vivo and in vitro against clots that are enriched in platelets, even at therapeutic concentrations. The release of radioactivity from 125I-fibrin-labeled clots was decreased by 47% 6 hours after the addition of t-PA 400 U/mL when formed in platelet-rich versus platelet-poor plasma. This difference was not due to the release of plasminogen activator inhibitor-1 (PAI-1) by platelets. Thus, the fibrinolytic activity of t- PA in the supernatant was similar in the two preparations and fibrin autography demonstrated only a minor degree of t-PA-PAI-1 complex formation. Furthermore, a similar platelet-dependent reduction in clot lysis was seen with a t-PA mutant resistant to inhibition by PAI-1. The reduction in t-PA activity correlated with a decrease in t-PA binding to platelet-enriched clot (60% +/- 3% v platelet-poor clot, n = 5). This reduction in binding was also shown using t-PA treated with the chloromethylketone, D-Phe-Pro-Arg-CH2Cl (PPACK) (36% +/- 13%, n = 3), and with S478A, a mutant t-PA in which the active site serine at position 478 has been substituted by alanine (43% +/- 6%, n = 3). In contrast, fixed platelets and platelet supernatants had no effect on the binding or lytic activity of t-PA. Pretreatment with cytochalasin D 1 mumol/L, which inhibits clot retraction, also abolished the platelet- induced inhibition of lysis and t-PA binding by platelets. These data suggest that platelets inhibit clot lysis at therapeutic concentrations of t-PA as a consequence of clot retraction and decreased access of fibrinolytic proteins.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1347-1352
Author(s):  
ET Fry ◽  
BE Sobel

Coronary thrombolysis with t-PA is generally implemented with concomitant administration of heparin. However, results of studies in vitro suggest that heparin competes with fibrin for binding of tissue- type plasminogen activator (t-PA), augments activation of free plasminogen, decreases fibrin specificity, and impairs thrombolysis. To define the biological implications of these observations, we characterized effects of therapeutic concentrations of heparin on the binding of t-PA to thrombi formed in whole blood, effects of heparin on activation of plasminogen by t-PA in plasma, and effects of heparin on thrombolysis induced by t-PA in a clot lysis system designed to simulate conditions in vivo. The amount of t-PA bound to thrombi was not affected by heparin (0, 0.5, 1.0, and 5.0 U/mL). When t-PA activity was selectively and irreversibly inhibited by D-Phe-Pro-Arg- chloromethyl ketone (PPACK) the amount of t-PA-PPACK bound was similarly unaffected by heparin. Thrombolysis measured by 125I- fibrin(ogen) release and by reduction of mass of thrombi were not altered by heparin. Heparin did not affect plasminogen consumption induced by t-PA. Plasma concentrations of alpha-2-antiplasmin after exposure of blood to t-PA were less depressed with increasing concentrations of heparin. Thus, heparin in therapeutic concentrations does not interfere with binding of t-PA to thrombi, augment activation of free plasminogen, or inhibit thrombolysis. Accordingly, it appears likely that concomitant administration of heparin will not impair thrombolysis with t-PA implemented clinically.


1992 ◽  
Vol 67 (04) ◽  
pp. 445-452
Author(s):  
L Nelles ◽  
X-K Li ◽  
I Vanlinthout ◽  
F De Cock ◽  
H R Lijnen ◽  
...  

Summaryrt-PA P47G, K49N, a substitution variant of recombinant human tissue-type plasminogen activator (rt-PA), in which proline at position 47 and lysine at position 49 were replaced by glycine and asparagine respectively, was previously described by Ahem et al. (J Biol Chem 1990; 265: 5540—5) to have an extended in vivo half-life with unaltered in vitro fibrinolytic properties. Because this variant might possess an increased in vivo thrombolytic potency, we have constructed its cDNA, expressed it in Chinese hamster ovary cells and determined its biochemical, thrombolytic and pharmacokinetic properties relative to those of home-made rt-PA and of alteplase (Actilyse®).The specific fibrinolytic activities on fibrin plates were 160,000 ± 17,000, 210,000 ± 88,000 and 460,000 ± 72,000 IU/mg (mean ± SEM) for rt-PA P47G, K49N, rt-PA and alteplase, respectively, while the catalytic efficiencies for plasminogen activation (k 2 K m) in the absence of fibrin were comparable (1.1 to 1.7 × 10-3 μM-1s-1). Fibrin enhanced the rate of plasminogen activation by rt-PA P47G, K49N 100-fold and by both wild-type molecules 390-fold. Binding of the variant rt-PA to fibrin was significantly reduced, but its affinity for lysine-Sepharose was unaltered. In an in vitro clot lysis system, consisting of a radiolabeled human plasma clot submersed in plasma, 50% clot lysis in 2 h required 0.67 ± 0.14 pg/ml rt-PA P47G, K49N, 0.36 ± 0.01 pg/ml rt-PA and 0.17 ± 0.01 pg/ml alteplase, respectively (mean ± SEM; n = 3 or 4). At these doses residual fibrinogen levels at 2 h were in excess of 80%.The thrombolytic properties were examined in a hamster pulmonary embolism model. The thrombolytic potency, expressed as percent lysis per mg activator administered per kg body weight, was 160 ± 28 for rt-PA P47G, K49N, 150 ± 36 for wild-type rt-PA and 310 ± 42 for alteplase. The specific thrombolytic activity, expressed as percent lysis per pg steady-state t-PA-related antigen level per ml plasma, was 49 ± 18% for rt-PA P47G, K49N, 160 ± 49 for rt-PA and 500 ± 79 for alteplase. The clearance rates following bolus injection in hamsters were 0.18 ± 0.02, 1.9 ± 0.2 and 2.1 ± 0.1 ml/min respectively.Thus, the substitution of only two residues in wild-type rt-PA markedly reduces its clearance, but it also significantly alters its specific thrombolytic activity, resulting in a virtually unaltered thrombolytic potency.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


1983 ◽  
Vol 50 (02) ◽  
pp. 518-523 ◽  
Author(s):  
C Kluft ◽  
A F H Jie ◽  
R A Allen

SummaryFunctional assay of extrinsic (tissue-type) plasminogen activator (EPA) in plasma on fibrin plates was evaluated. Using specific quenching antibodies, we demonstrated the method to be specific for EPA under all conditions tested. Contributions of urokinases and intrinsic activators were excluded. The quantity of EPA in blood samples, as compared with purified uterine tissue activator, shows 1 blood activator unit (BAU) to be comparable to 0.93 ng.The median values for EPA activity for healthy volunteers were: baseline, 1.9 BAU/ml (n = 123); diurnal, 5.5 BAU/ml (n = 12); DDAVP administration, 11.7 BAU/ml (n = 39); exhaustive exercise, 25 BAU/ml (n = 24); venous occlusion (15 min), 35 BAU/ml (n = 61). A large inter-individual variation in EPA activity was found, while individual baseline values tended to be constant for periods of weeks.In vitro in blood EPA activity shows a disappearance of 50% in about 90 min at 37° C; EPA activity in euglobulin fractions is stable for ≤2 hr at 37° C.A rapid decrease in EPA activity occurs in vivo, as noted after extracorporal circulation and exercise stimulation (t½ decay, 2-5 min).


1986 ◽  
Vol 56 (01) ◽  
pp. 035-039 ◽  
Author(s):  
D Collen ◽  
F De Cock ◽  
E Demarsin ◽  
H R Lijnen ◽  
D C Stump

SummaryA potential synergic effect of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (scuPA) or urokinase on clot lysis was investigated in a whole human plasma system in vitro. The system consisted of a human plasma clot labeled with 125I-fibrinogen, immersed in titrated whole human plasma, to which the thrombolytic agents were added. Clot lysis was quantitated by measurement of released 125I, and activation of the fibrinolytic system in the surrounding plasma by measurements of fibrinogen and α2-antiplasmin.t-PA, scu-PA and urokinase induced a dose-dependent and time-dependent clot lysis; 50 percent lysis after 2 h was obtained with 5 nM t-PA, 20 nM scu-PA and 12 nM urokinase. At these concentrations no significant activation of the fibrinolytic system in the plasma was observed with t-PA and scu-PA, whereas urokinase caused significant α2-antiplasmin consumption and concomitant fibrinogen degradation. The shape of the dose-response curves was different; t-PA and urokinase showed a log linear dose-response whereas that of scu-PA was sigmoidal.


Sign in / Sign up

Export Citation Format

Share Document