scholarly journals Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin

Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 753-763
Author(s):  
P Van Vlasselaer ◽  
N Falla ◽  
H Snoeck ◽  
E Mathieu

Osteogenic cells were sorted from bone marrow of 5-fluorouracil (5-FU)- treated mice based on light scatter characteristics, Sca-1 expression, and their binding to wheat germ agglutinin (WGA). Four sort gates were established using forward (FSC) and perpendicular (SSC) light scatter and were denominated as FSChigh SSClow, FSClow SSChigh, FSClow SSClow, and FSChigh SSChigh cell. Cells from the FSChigh SSChigh gate, but not from the other gates, synthesized alkaline phosphatase, collagen, and osteocalcin and formed a mineralized matrix in culture. The number of osteoprogenitor cells was significantly enriched after depleting the 5- FU bone marrow from cells of the lymphoid and myeloid lineage, eg, T cells, B cells, natural killer cells, granulocytes, macrophages, and erythrocytes. Approximately 95% of the FSChigh SSChigh cell population of this “lineage-negative” (Lin-) marrow expressed the Sca-1 antigen (Sca-1+) and bound WGA. Three additional sort windows were established based on WGA binding intensity and were denominated as Sca-1+ WGAdull, Sca-1+ WGAmedium, and Sca-1+ WGAbright. Cells from the Sca-1+ WGAbright gate, but not from the other gates, synthesized bone proteins and formed a mineralized matrix. However, they lost this capacity upon subcultivation. Further immunophenotypic characterization showed that FSChigh SSChigh Lin- Sca-1+ WGAbright cells expressed stromal (KM16) and endothelial (Sab-1 and Sab-2) markers, but not hematopoietic surface markers such as c-kit and Thy1.2. Sorted FSChigh SSChigh Lin- Sca-1+ WGAbright cells form three-dimensional nodules that stain with the von Kossa technique and contain osteoblast and osteocyte-like cells.

Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 753-763 ◽  
Author(s):  
P Van Vlasselaer ◽  
N Falla ◽  
H Snoeck ◽  
E Mathieu

Abstract Osteogenic cells were sorted from bone marrow of 5-fluorouracil (5-FU)- treated mice based on light scatter characteristics, Sca-1 expression, and their binding to wheat germ agglutinin (WGA). Four sort gates were established using forward (FSC) and perpendicular (SSC) light scatter and were denominated as FSChigh SSClow, FSClow SSChigh, FSClow SSClow, and FSChigh SSChigh cell. Cells from the FSChigh SSChigh gate, but not from the other gates, synthesized alkaline phosphatase, collagen, and osteocalcin and formed a mineralized matrix in culture. The number of osteoprogenitor cells was significantly enriched after depleting the 5- FU bone marrow from cells of the lymphoid and myeloid lineage, eg, T cells, B cells, natural killer cells, granulocytes, macrophages, and erythrocytes. Approximately 95% of the FSChigh SSChigh cell population of this “lineage-negative” (Lin-) marrow expressed the Sca-1 antigen (Sca-1+) and bound WGA. Three additional sort windows were established based on WGA binding intensity and were denominated as Sca-1+ WGAdull, Sca-1+ WGAmedium, and Sca-1+ WGAbright. Cells from the Sca-1+ WGAbright gate, but not from the other gates, synthesized bone proteins and formed a mineralized matrix. However, they lost this capacity upon subcultivation. Further immunophenotypic characterization showed that FSChigh SSChigh Lin- Sca-1+ WGAbright cells expressed stromal (KM16) and endothelial (Sab-1 and Sab-2) markers, but not hematopoietic surface markers such as c-kit and Thy1.2. Sorted FSChigh SSChigh Lin- Sca-1+ WGAbright cells form three-dimensional nodules that stain with the von Kossa technique and contain osteoblast and osteocyte-like cells.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. e41-e55 ◽  
Author(s):  
Tomoiku Takaku ◽  
Daniela Malide ◽  
Jichun Chen ◽  
Rodrigo T. Calado ◽  
Sachiko Kajigaya ◽  
...  

AbstractIn many animals, blood cell production occurs in the bone marrow. Hematopoiesis is complex, requiring self-renewing and pluripotent stem cells, differentiated progenitor and precursor cells, and supportive stroma, adipose tissue, vascular structures, and extracellular matrix. Although imaging is a vital tool in hematology research, the 3-dimensional architecture of the bone marrow tissue in situ remains largely uncharacterized. The major hindrance to imaging the intact marrow is the surrounding bone structures are almost impossible to cut/image through. We have overcome these obstacles and describe a method whereby whole-mounts of bone marrow tissue were immunostained and imaged in 3 dimensions by confocal fluorescence and reflection microscopy. We have successfully mapped by multicolor immunofluorescence the localization pattern of as many as 4 cell features simultaneously over large tiled views and to depths of approximately 150 μm. Three-dimensional images can be assessed qualitatively and quantitatively to appreciate the distribution of cell types and their interrelationships, with minimal perturbations of the tissue. We demonstrate its application to normal mouse and human marrow, to murine models of marrow failure, and to patients with aplastic anemia, myeloid, and lymphoid cell malignancies. The technique should be generally adaptable for basic laboratory investigation and for clinical diagnosis of hematologic diseases.


1984 ◽  
Vol 98 (1) ◽  
pp. 29-34 ◽  
Author(s):  
M R Torrisi ◽  
P Pinto da Silva

We used thin-section fracture-label to determine the distribution of wheat-germ agglutinin binding sites in intracellular membranes of secretory and nonsecretory rat tissues as well as in human leukocytes. In all cases, analysis of the distribution of wheat germ agglutinin led to the definition of two endomembrane compartments: one, characterized by absence of the label, includes the membranes of mitochondria and peroxisomes as well as those of the endoplasmic reticulum and nuclear envelope; the other, strongly labeled, comprises the membrane of lysosomes, phagocytic vacuoles, and secretory granules, as well as the plasma membrane. The Golgi apparatus was weakly labeled in all studied tissues.


Blood ◽  
1990 ◽  
Vol 75 (6) ◽  
pp. 1240-1246 ◽  
Author(s):  
I McAlister ◽  
NS Wolf ◽  
ME Pietrzyk ◽  
PS Rabinovitch ◽  
G Priestley ◽  
...  

Abstract Hematopoietic stem cells were purified from murine bone marrow cells (BMC). Their characteristic density, size, internal complexity, Hoechst 33342 dye uptake, and wheat germ agglutinin (WGA) affinity were used to distinguish them from other cells in the bone marrow. BMC suspensions were centrifuged over Ficoll Lymphocyte Separation Media (Organon Teknika, Durham, NC; density 1.077 to 1.08). The lower-density cells were drawn off, stained with Hoechst and labeled with biotinylated WGA bound to streptavidin conjugated to phycoerythrin (WGA-B*A-PE) or with WGA conjugated to Texas Red. These cells were then analyzed and sorted by an Ortho Cytofluorograph 50-H cell sorter. The cells exhibiting medium to high forward light scatter, low to medium right angle light scatter, low Hoechst intensity, and high WGA affinity were selected. Sorted BMC (SBMC) were stained with Romanowsky-type stains for morphologic assay, and were assayed in lethally irradiated (LI) mice for their ability to produce colony-forming units in the spleen (CFU-S) and for their ability to produce survival. The spleen seeding factor for day 8 CFU-S upon retransplantation of the isolated cells was 0.1. The isolated cells were found to have consistent morphology, were enriched up to 135-fold as indicated by day 8 CFU-S assay, 195-fold as indicated by day 14 CFU-S assay, and 150 sorter-selected BMC were able to produce long-term survival in LI mice with retention of donor karyotype. When recipients of this first transplantation were themselves used as BMC donors, their number of day 8 and day 12 CFU-S were found to be reduced. However, 3 X 10(5) of their BMC provided 100% survival among secondary recipients. When the previously SBMC were competed after one transplantation against fresh nonsorted BMC in a mixed donor transplant, they showed the decline in hematopoietic potency normally seen in previously transplanted BMC. We conclude that the use of combinations of vital dyes for fluorescence-activated cell sorting (FACS) selection of survival-promoting murine hematopoietic stem cells provides results comparable with those produced by antibody- selected FACS and has the advantage of a method directly transferable to human BMC.


1985 ◽  
Vol 37 (3) ◽  
pp. 263-277 ◽  
Author(s):  
R. de Water ◽  
J.W.M. van der Meer ◽  
J.M. van't Noordende ◽  
J.J.M. Onderwater ◽  
J.S. van de Gevel ◽  
...  

1987 ◽  
Vol 65 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Akiko Kumagai ◽  
Hideo Mori ◽  
Shinoi Osuka ◽  
Koji Okamoto

Prespore- and prestalk-specific, wheat germ agglutinin (WGA) binding proteins in Dictyostelium discoideum were identified on two-dimensional gels by the use of a peroxidase–antiperoxidase method. Using these proteins as markers, differentiation of the two presumptive cell types was examined during the development. In normal development, two groups of prespore-specific WGA-binding proteins were found: one was detectable when cells formed discrete aggregates without tips (10.5 h) and reached a maximum level at 12 h, while the other appeared at the time of slug formation (17 h). On the other hand, a prestalk-specific WGA-binding protein, having an unusually high pI value (pI ca. 9.5), began to accumulate just before slug formation (13.5 h). The changes of WGA-binding proteins in a shake culture system were similarly analysed and compared with those in normal development.


1984 ◽  
Vol 14 (4) ◽  
pp. 410
Author(s):  
L.A. Ginsel ◽  
R. De Water ◽  
W.Th. Daems ◽  
J.W.M. Van der Meer

1980 ◽  
Vol 28 (9) ◽  
pp. 934-946 ◽  
Author(s):  
S M Watt ◽  
A W Burgess ◽  
D Metcalf ◽  
F L Battye

Murine bone marrow and blood cells have been analyzed and fractionated using an automated FACS II cell sorter. Using visible light scattered in the direction of (0 degrees) and perpendicular to (90 degrees) the laser beam it was possible to enrich for neutrophils (84%), immature myeloid cells (47%), and monocytes (78%). The enrichment for neutrophils was improved to 92% by using the light scattered by ultraviolet laser light (ca.360 nm). The autofluorescence at these wavelengths proved useful for obtaining further enrichment (to 97%). Indeed, three parameter sorting with 0 degrees and 90 degrees light scatter as well as autofluorescence also allowed the separation of lymphocytes (95%) and immature myeloid cells (89%). The same procedures could be applied for the isolation of neutrophils from mouse peripheral blood.


Sign in / Sign up

Export Citation Format

Share Document