scholarly journals Release of interleukin-12 in experimental Escherichia coli septic shock in baboons: relation to plasma levels of interleukin-10 and interferon- gamma

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5144-5151 ◽  
Author(s):  
PM Jansen ◽  
TC van der Pouw Kraan ◽  
IW de Jong ◽  
G van Mierlo ◽  
J Wijdenes ◽  
...  

Interleukin (IL)-12 is thought to be a key factor for the induction of interferon gamma (IFN-gamma), a cytokine essential for the lethal effects of endotoxin. We report here on the release of the nonfunctional subunit of IL-12, p40, as well as biologically active heterodimeric IL-12, p70, after administration of a lethal (n = 5) or sublethal (n = 8) dose of live Escherichia coli to baboons. Remarkably, on lethal challenge, peak levels of p40 were observed at 3 hours that were about twofold lower than those elicited after sublethal challenge (2,813 +/- 515 pg/mL v 4,972 +/- 732 pg/mL, P < .05). This disparity was also observed, although to a lesser extent, for IL-12 p70 antigen, of which maximum levels of 91 +/- 47 pg/mL and 151 +/- 41 pg/mL were measured 6 hours after a lethal or sublethal dose of E coli, respectively. Circulating p70 antigen correlated with IL-12 biologic activity (r = 0.869; P < .001). When comparing lethal to sublethal conditions, lower peak levels of IL-12 on lethal E coli sharply contrasted with higher levels of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha, IL-1beta, IL-6, and IL-8 observed in these animals. Lower IL-12 concentrations in the lethal group may have resulted in part from the enhanced production of IL-10, a known inhibitor of IL-12 synthesis in vitro, as peak levels of this cytokine 3 hours postchallenge inversely correlated with peak levels of IL-12, in particular p40 (r = -0.802; P < .01). Contrary to what might be expected if IFN-gamma were solely induced by IL-12, lethally challenged baboons generated threefold more IFN-gamma at 6 hours than those receiving a sublethal dose (P < .05). Moreover, higher levels of IFN- gamma were associated with lower p40/p70 ratios, suggesting that, in agreement with observations in vitro, IFN-gamma may have preferentially upregulated the release of p70 over p40. These data show that IL-12 is released in experimental septic shock in nonhuman primates and suggest that IL-10 and IFN-gamma are involved in the regulation of this release. Furthermore, this study indicates that the systemic release of IL-12 might be essential, but is not likely sufficient, to promote lethal production of IFN-gamma in sepsis.

1994 ◽  
Vol 179 (4) ◽  
pp. 1273-1283 ◽  
Author(s):  
R Manetti ◽  
F Gerosa ◽  
M G Giudizi ◽  
R Biagiotti ◽  
P Parronchi ◽  
...  

Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen-specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN-gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.


2007 ◽  
Vol 74 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Alexander Mellmann ◽  
Shan Lu ◽  
Helge Karch ◽  
Jian-guo Xu ◽  
Dag Harmsen ◽  
...  

ABSTRACT Using colony blot hybridization with stx 2 and eae probes and agglutination in anti-O157 lipopolysaccharide serum, we isolated stx 2-positive and eae-positive sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:NM (nonmotile) strains from initial stool specimens and stx-negative and eae-positive SF E. coli O157:NM strains from follow-up specimens (collected 3 to 8 days later) from three children. The stx-negative isolates from each patient shared with the corresponding stx 2-positive isolates fliC H7, non-stx virulence traits, and multilocus sequence types, which indicates that they arose from the stx 2-positive strains by loss of stx 2 during infection. Analysis of the integrity of the yecE gene, a possible stx phage integration site in EHEC O157, in the consecutive stx 2-positive and stx-negative isolates demonstrated that yecE was occupied in stx 2-positive but intact in stx-negative strains. It was possible to infect and lysogenize the stx-negative E. coli O157 strains in vitro using an stx 2-harboring bacteriophage from one of the SF EHEC O157:NM isolates. The acquisition of the stx 2-containing phage resulted in the occupation of yecE and production of biologically active Shiga toxin 2. We conclude that the yecE gene in SF E. coli O157:NM is a hot spot for excision and integration of Shiga toxin 2-encoding bacteriophages. SF EHEC O157:NM strains and their stx-negative derivatives thus represent a highly dynamic system that can convert in both directions by the loss and gain of stx 2-harboring phages. The ability to recycle stx 2, a critical virulence trait, makes SF E. coli O157:NM strains ephemeral EHEC that can exist as stx-negative variants during certain phases of their life cycle.


1992 ◽  
Vol 175 (1) ◽  
pp. 169-174 ◽  
Author(s):  
J S Silva ◽  
P J Morrissey ◽  
K H Grabstein ◽  
K M Mohler ◽  
D Anderson ◽  
...  

Studies were undertaken to determine whether interleukin 10, (IL-10) a cytokine shown to inhibit interferon gamma (IFN-gamma) production, was involved in Trypanosoma cruzi infections in mice. Exogenous IFN-gamma protects mice from fatal infection with T. cruzi. Furthermore, resistant B6D2 mice developed fatal T. cruzi infections when treated with neutralizing anti-IFN-gamma monoclonal antibody (mAb). Thus, endogenous as well as exogenous IFN-gamma is important in mediating resistance to this parasite. Because both T. cruzi-susceptible (B6) and -resistant (B6D2) mouse strains produced IFN-gamma during acute infection, we looked for the concomitant production of mediators that could interfere with IFN-gamma-mediated resistance to T. cruzi. We found that IL-10-specific mRNA was produced in the spleens of mice with acute T. cruzi infections. In addition, spleen cell culture supernatants from infected B6 mice, and to a lesser extent B6D2 mice, elaborated an inhibitor(s) of IFN-gamma production. This inhibitor(s) was neutralized by anti-IL-10 mAb. These experiments demonstrated the production of biologically active IL-10 during T. cruzi infection. In further studies in vitro, it was shown that IL-10 blocked the ability of IFN-gamma to inhibit the intracellular replication of T. cruzi in mouse peritoneal macrophages. Thus, in addition to its known ability to inhibit the production of IFN-gamma, IL-10 (cytokine synthesis inhibitory factor), may also inhibit the effects of IFN-gamma. These experiments demonstrate that IL-10 is produced during infection with a protozoan parasite and suggest a regulatory role for this cytokine in the mediation of susceptibility to acute disease.


1996 ◽  
Vol 40 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Y Lin ◽  
W J Leach ◽  
W S Ammons

As a consequence of their bactericidal actions, many antibiotics cause the release of endotoxin, a primary mediator of gram-negative sepsis. Bactericidal/permeability-increasing protein (BPI) has bactericidal activity and neutralizes endotoxin in vitro and in vivo. We sought to examine the effect of a recombinant N-terminal fragment of BPI (rBPI21) in conjunction with cefamandole, a cephalosporin antibiotic, in the treatment of Escherichia coli bacteremia and septic shock in rabbits. Cefamandole (100 mg/kg of body weight) was injected intravenously. This was followed by simultaneous 10-min infusions of E. coli O7:K1 (9 x 10(9) CFU/kg) and rBPI21 (10 mg/kg). rBPI21 was continuously infused for an additional 110 min at 10 mg/kg/h. The administration of rBPI21 in conjunction with the administration of cefamandole prevented the cefamandole-induced increase of free endotoxin in plasma, accelerated bacterial clearance, ameliorated cardiopulmonary dysfunction, and thereby, prevented death, whereas neither agent alone was protective in this animal model. The efficacy of the combined treatment with rBPI21 and cefamandole suggests a synergistic interaction between the two agents. The data indicate that rBPI21 may be useful in conjunction with traditional antibiotic therapy.


1989 ◽  
Vol 3 (1) ◽  
pp. 15-21 ◽  
Author(s):  
M. C. Hanks ◽  
R. T. Talbot ◽  
H. M. Sang

ABSTRACT The putative chicken prolactin (chPRL) cDNA clone PRL101 was manipulated in vitro and cloned into the Escherichia coli expression vector pKK233-2 to produce a plasmid coding for recombinant-derived mature chPRL (R-chPRL). Expression of this manipulated cDNA sequence in E. coli resulted in the production of a 23 kDa protein which cross-reacted with specific chPRL antisera in Western blots. The partially purified protein stimulated ring dove crop sac mucosa to proliferate in a PRL bioassay, demonstrating that the R-chPRL was biologically active. R-chPRL was expressed at a level of approximately 1·5% of total cell protein.


2009 ◽  
Vol 75 (10) ◽  
pp. 3137-3145 ◽  
Author(s):  
Hsien-Chung Tseng ◽  
Collin H. Martin ◽  
David R. Nielsen ◽  
Kristala L. Jones Prather

ABSTRACT Synthetic metabolic pathways have been constructed for the production of enantiopure (R)- and (S)-3-hydroxybutyrate (3HB) from glucose in recombinant Escherichia coli strains. To promote maximal activity, we profiled three thiolase homologs (BktB, Thl, and PhaA) and two coenzyme A (CoA) removal mechanisms (Ptb-Buk and TesB). Two enantioselective 3HB-CoA dehydrogenases, PhaB, producing the (R)-enantiomer, and Hbd, producing the (S)-enantiomer, were utilized to control the 3HB chirality across two E. coli backgrounds, BL21Star(DE3) and MG1655(DE3), representing E. coli B- and K-12-derived strains, respectively. MG1655(DE3) was found to be superior for the production of each 3HB stereoisomer, although the recombinant enzymes exhibited lower in vitro specific activities than BL21Star(DE3). Hbd in vitro activity was significantly higher than PhaB activity in both strains. The engineered strains achieved titers of enantiopure (R)-3HB and (S)-3HB as high as 2.92 g liter−1 and 2.08 g liter−1, respectively, in shake flask cultures within 2 days. The NADPH/NADP+ ratio was found to be two- to three-fold higher than the NADH/NAD+ ratio under the culture conditions examined, presumably affecting in vivo activities of PhaB and Hbd and resulting in greater production of (R)-3HB than (S)-3HB. To the best of our knowledge, this study reports the highest (S)-3HB titer achieved in shake flask E. coli cultures to date.


1994 ◽  
Vol 179 (3) ◽  
pp. 1065-1070 ◽  
Author(s):  
H Quill ◽  
A Bhandoola ◽  
G Trinchieri ◽  
J Haluskey ◽  
D Peritt

The cytokine, interleukin 12 (IL-12), stimulates both natural killer cells and T cells to proliferate and to secrete interferon gamma (IFN-gamma). The T cell proliferative response to IL-12 must be induced and is evident after T cell receptor-mediated stimulation. As reported here, tolerant CD4+ T cells and clones, that are anergic for IL-2 production, are also anergic for induction of the proliferative response to IL-12. Murine T helper 1 clones tolerized in vitro, as well as anergic CD4+ T cells isolated from mice tolerized to the Mls-1a antigen (Ag) in vivo, demonstrated defective induction of proliferation to IL-12 upon restimulation with Ag. IL-12-enhanced production of IFN-gamma was observed in both control and anergic cells after Ag/antigen-presenting cell (APC) activation, although total IFN-gamma secretion by anergic cells was less than that produced by control cells, even in the presence of IL-12. These data indicate that T cell clonal anergy results in profound inhibition of proliferative responses, since the autocrine growth factor, IL-2, is not produced, and the APC-derived cytokine, IL-12, is not an effective stimulus for anergic T cell proliferation.


1995 ◽  
Vol 181 (5) ◽  
pp. 1615-1621 ◽  
Author(s):  
I E Flesch ◽  
J H Hess ◽  
S Huang ◽  
M Aguet ◽  
J Rothe ◽  
...  

Interleukin 12 (IL-12) produced by macrophages immediately after infection is considered essential for activation of a protective immune response against intracellular pathogens. In the murine Mycobacterium bovis Bacillus Calmette-Guérin (BCG) model we assessed whether early IL-12 production by macrophages depends on other cytokines. In vitro, murine bone marrow-derived macrophages produced IL-12 after infection with viable M. bovis BCG or stimulation with LPS, however, priming with recombinant interferon gamma (rIFN-gamma) was necessary. In addition, IL-12 production by these macrophages was blocked by specific anti-tumor necrosis factor alpha (TNF-alpha) antiserum. Macrophages from gene deletion mutant mice lacking either the IFN-gamma receptor or the TNF receptor 1 (p55) failed to produce IL-12 in vitro after stimulation with rIFN-gamma and mycobacterial infection. In vivo, IL-12 production was induced in spleens of immunocompetent mice early during M. bovis BCG infection but not in those of mutant mice lacking the receptors for IFN-gamma or TNF. Our results show that IL-12 production by macrophages in response to mycobacterial infection depends on IFN-gamma and TNF. Hence, IL-12 is not the first cytokine produced in mycobacterial infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi-Bo Yan ◽  
Jing-Long Liang ◽  
Fu-Xing Niu ◽  
Yu-Ping Shen ◽  
Jian-Zhong Liu

Pterostilbene is a derivative of resveratrol with a higher bioavailability and biological activity, which shows antioxidant, anti-inflammatory, antitumor, and antiaging activities. Here, directed evolution and host strain engineering were used to improve the production of pterostilbene in Escherichia coli. First, the heterologous biosynthetic pathway enzymes of pterostilbene, including tyrosine ammonia lyase, p-coumarate: CoA ligase, stilbene synthase, and resveratrol O-methyltransferase, were successively directly evolved through error-prone polymerase chain reaction (PCR). Four mutant enzymes with higher activities of in vivo and in vitro were obtained. The directed evolution of the pathway enzymes increased the pterostilbene production by 13.7-fold. Then, a biosensor-guided genome shuffling strategy was used to improve the availability of the precursor L-tyrosine of the host strain E. coli TYR-30 used for the production of pterostilbene. A shuffled E. coli strain with higher L-tyrosine production was obtained. The shuffled strain harboring the evolved pathway produced 80.04 ± 5.58 mg/l pterostilbene, which is about 2.3-fold the highest titer reported in literatures.


2019 ◽  
Vol 35 (6) ◽  
pp. 91-101
Author(s):  
F.A. Klebanov ◽  
S.E. Cheperegin ◽  
D.G. Kozlov

Mutant variants of mini-intein PRP8 from Penicillium chrysogenum (Int4b) with improved control of C-terminal processing were characterized. The presented variants can serve as a basis for self-removed polypeptide tags capable of carrying an affine label and allowing to optimize the process of obtaining target proteins and peptides in E. coli cells. They allow to synthesize target molecules in the composition of soluble and insoluble hybrid proteins (fusions), provide their afnne purification, autocatalytic processing and obtaining mature target products. The presented variants have a number of features in comparison with the known prototypes. In particular the mutant mini-intein Int4bPRO, containing the L93P mutation, has temperature-dependent properties. At cultivation temperature below 30 °C it allows the production of target molecules as part of soluble fusions, but after increasing of cultivation temperature to 37 °C it directs the most of synthesized fusions into insoluble intracellular aggregates. The transition of Int4bPRO into insoluble form is accompanied by complete inactivation of C-terminal processing. Further application of standard protein denaturation-renaturation procedures enable efficiently reactivate Int4bPRO and to carry out processing of its fusions in vitro. Two other variants, Int4b56 and Int4b36, containing a point mutation T62N or combination of mutations D144N and L146T respectively, have a reduced rate of C-terminal processing. Their use in E. coli cells allows to optimize the biosynthesis of biologically active target proteins and peptides in the composition of soluble fusions, suitable for afnne purification and subsequent intein-dependent processing without the use of protein denaturation-renaturation procedures. intein, fusion, processing, processing rate, gelonin The work was supported within the framework of the State Assignment no. 595-00003-19 PR.


Sign in / Sign up

Export Citation Format

Share Document