Inactivation of Recombinant Monocyte cAMP-Specific Phosphodiesterase by cAMP Analog, 8-[(4-Bromo-2,3-Dioxobutyl)thio]Adenosine 3′,5′-Cyclic Monophosphate
Abstract Two cAMP analogs, 8- and 2- [(4-bromo-2,3-dioxobutyl) thio]adenosine 3′,5′-cyclic monophosphate (8- and 2-BDB-TcAMP) have been used in probing the catalytic site of recombinant monocyte cAMP-specific phosphodiesterase (PDE4a). 2-BDB-TcAMP is a reversible and competitive inhibitor (Ki = 5.5 μmol/L) of cAMP hydrolysis by PDE4a. 8-BDB-TcAMP irreversibly inactivates the enzyme in a time- and concentration-dependent manner with a second order rate constant of 0.022 mmol/L−1min−1. The rate of inactivation of PDE4a is reduced by the presence of the substrate cAMP and specific inhibitors, rolipram and denbufylline, but not by cGMP or AMP. Reduction of the enzyme-inhibitor complex with sodium [3H]borohydride shows that 1.2 mol of the affinity label/mol of enzyme was incorporated. The radiolabeled peptide is composed of 10 amino acid residues (697 to 706) located near the carboxyl end of the proposed catalytic domain. The peptide (GPGHPPLPDK) has seven nonpolar and aliphatic residues, of which four are proline, giving the peptide a highly structured conformation. This peptide is the first to be identified in the putative catalytic domain involved in substrate recognition.