scholarly journals Sialyl Lewisx (sLex) and an sLexMimetic, CGP69669A, Disrupt E-Selectin–Dependent Leukocyte Rolling In Vivo

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 475-483 ◽  
Author(s):  
Keith E. Norman ◽  
Gary P. Anderson ◽  
Hartmut C. Kolb ◽  
Klaus Ley ◽  
Beat Ernst

Leukocyte rolling is the earliest observable event in their recruitment from the circulation to inflamed tissue. This rolling is mediated largely by interaction between the selectin family of adhesion molecules and their glycosylated ligands. Although the nature of these ligands and their interaction with the selectins is not fully understood, it is accepted that expression of fucosylated sialylated glycans such as sialyl Lewisx (sLex) is required for function. Despite findings that sLex inhibits binding of leukocytes to E-selectin in vitro, and has beneficial effects in inflammatory disease models, inhibition of E-selectin–dependent leukocyte rolling in vivo has not been described. Functional overlap between the selectins has been noted and reduction of rolling by E-selectin antibodies only occurs if P-selectin is absent or blocked. We demonstrate that leukocyte rolling velocity in tumor necrosis factor alpha (TNFα)-stimulated mouse cremaster is increased following treatment with either sLex or the sLex-mimetic CGP69669A and that rolling is dramatically reduced if CGP69669A is applied in the presence of anti–P-selectin antibody. These effects are characteristic of E-selectin antagonism. In contrast, surgically stimulated (L- or P-selectin–dependent) rolling is unaffected by either sLex or CGP69669A. Our data demonstrate that CGP69669A is an effective and selective antagonist of E-selectin in vivo.

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 475-483 ◽  
Author(s):  
Keith E. Norman ◽  
Gary P. Anderson ◽  
Hartmut C. Kolb ◽  
Klaus Ley ◽  
Beat Ernst

Abstract Leukocyte rolling is the earliest observable event in their recruitment from the circulation to inflamed tissue. This rolling is mediated largely by interaction between the selectin family of adhesion molecules and their glycosylated ligands. Although the nature of these ligands and their interaction with the selectins is not fully understood, it is accepted that expression of fucosylated sialylated glycans such as sialyl Lewisx (sLex) is required for function. Despite findings that sLex inhibits binding of leukocytes to E-selectin in vitro, and has beneficial effects in inflammatory disease models, inhibition of E-selectin–dependent leukocyte rolling in vivo has not been described. Functional overlap between the selectins has been noted and reduction of rolling by E-selectin antibodies only occurs if P-selectin is absent or blocked. We demonstrate that leukocyte rolling velocity in tumor necrosis factor alpha (TNFα)-stimulated mouse cremaster is increased following treatment with either sLex or the sLex-mimetic CGP69669A and that rolling is dramatically reduced if CGP69669A is applied in the presence of anti–P-selectin antibody. These effects are characteristic of E-selectin antagonism. In contrast, surgically stimulated (L- or P-selectin–dependent) rolling is unaffected by either sLex or CGP69669A. Our data demonstrate that CGP69669A is an effective and selective antagonist of E-selectin in vivo.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3585-3591 ◽  
Author(s):  
Keith E. Norman ◽  
Andreas G. Katopodis ◽  
Gebhard Thoma ◽  
Frank Kolbinger ◽  
Anne E. Hicks ◽  
...  

Abstract Selectin-dependent rolling is the earliest observable event in the recruitment of leukocytes to inflamed tissues. Several glycoproteins decorated with sialic acid, fucose, and/or sulfate have been shown to bind the selectins. The best-characterized selectin ligand is P-selectin glycoprotein-1 (PSGL-1) that supports P-selectin– dependent rolling in vitro and in vivo. In vitro studies have suggested that PSGL-1 may also be a ligand for E- and L-selectins. To study the in vivo function of PSGL-1, without the influence of other leukocyte proteins, the authors observed the interaction of PSGL-1–coated microspheres in mouse venules stimulated to express P- and/or E-selectin. Microspheres coated with functional recombinant PSGL-1 rolled in surgically stimulated and tumor necrosis factor alpha (TNFα)-stimulated mouse venules. P-selectin deficiency or inhibition abolished microsphere rolling in surgically and TNFα-stimulated venules, whereas E-selectin deficiency or inhibition increased microsphere rolling velocity in TNFα-stimulated venules. The results suggest that P-selectin–PSGL-1 interaction alone is sufficient to mediate rolling in vivo and that E-selectin–PSGL-1 interaction supports slow rolling.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3585-3591 ◽  
Author(s):  
Keith E. Norman ◽  
Andreas G. Katopodis ◽  
Gebhard Thoma ◽  
Frank Kolbinger ◽  
Anne E. Hicks ◽  
...  

Selectin-dependent rolling is the earliest observable event in the recruitment of leukocytes to inflamed tissues. Several glycoproteins decorated with sialic acid, fucose, and/or sulfate have been shown to bind the selectins. The best-characterized selectin ligand is P-selectin glycoprotein-1 (PSGL-1) that supports P-selectin– dependent rolling in vitro and in vivo. In vitro studies have suggested that PSGL-1 may also be a ligand for E- and L-selectins. To study the in vivo function of PSGL-1, without the influence of other leukocyte proteins, the authors observed the interaction of PSGL-1–coated microspheres in mouse venules stimulated to express P- and/or E-selectin. Microspheres coated with functional recombinant PSGL-1 rolled in surgically stimulated and tumor necrosis factor alpha (TNFα)-stimulated mouse venules. P-selectin deficiency or inhibition abolished microsphere rolling in surgically and TNFα-stimulated venules, whereas E-selectin deficiency or inhibition increased microsphere rolling velocity in TNFα-stimulated venules. The results suggest that P-selectin–PSGL-1 interaction alone is sufficient to mediate rolling in vivo and that E-selectin–PSGL-1 interaction supports slow rolling.


2021 ◽  
Author(s):  
Masaya Kotsuka ◽  
Yuki Hashimoto ◽  
Richi Nakatake ◽  
Tetsuya Okuyama ◽  
Masahiko Hatta ◽  
...  

Abstract Omeprazole (OMZ) is a proton pump inhibitor (PPI) that is used to reduce gastric acid secretion, but little is known about its possible liver protective effects. This study investigated whether OMZ has beneficial effects in rat septic models of lipopolysaccharide (LPS)-induced liver injury after D-galactosamine (GalN) treatment and 70% hepatectomy (PH), and to determine the mechanisms of OMZ in an in vitro model of liver injury. In the in vivo models, the effects of OMZ were examined 1 h before treatment. OMZ increased survival and decreased tumor necrosis factor-alpha, inducible nitric oxide synthase, cytokine-induced neutrophil chemoattractant 1, interleukin (IL)-6, and IL-1β mRNA expression, and increased IL-10 mRNA expression in the livers of both GaIN/LPS- and PH/LPS-treated rats. Necrosis and apoptosis were inhibited by OMZ in GaIN/LPS rats, but OMZ had no effects on necrosis in PH/LPS rats. Primary rat hepatocytes were treated with IL1-β in the presence or absence of OMZ (in vitro model). OMZ inhibited iNOS induction partially through suppression of NF-κB signaling in hepatocytes. Furthermore, OMZ inhibited the induction of several inflammatory mediators, resulting in the prevention of LPS-induced liver injury after GalN liver failure and PH, although OMZ showed different doses and mechanisms in the two models.


2016 ◽  
Vol 5 (3) ◽  
pp. 836-847 ◽  
Author(s):  
Crystal S. Lewis ◽  
Luisa Torres ◽  
Jeremy T. Miyauchi ◽  
Cyrus Rastegar ◽  
Jonathan M. Patete ◽  
...  

Abstract Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of N-Rhomb exposure in the presence of microglia, we have synthesized Rhodamine B (RhB)-labeled α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB-labeled α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure stimulate the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 μg mL−1 after 48 hours of incubation, the in vitro and in vivo internalization of RhB-labeled α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.


1996 ◽  
Vol 270 (1) ◽  
pp. H183-H193 ◽  
Author(s):  
R. M. Binns ◽  
S. T. Licence ◽  
A. A. Harrison ◽  
E. T. Keelan ◽  
M. K. Robinson ◽  
...  

The endothelial molecule E-selectin binds most leukocyte subsets in vitro. Yet its role in regulating the very different kinetics of inflammatory infiltration of different leukocyte subsets in vivo is unclear. The kinetics of E-selectin upregulation and polymorphonuclear leukocyte (PMN) and blood lymphocyte (PBL) localization in inflammation induced by interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF-alpha), phytohemagglutinin (PHA), and phorbol myristate acetate (PMA) were investigated in a well-established inbred pig trafficking model. They differed markedly both for these three labeled indicators of inflammation and in each of the four inflammatory processes. In each, E-selectin upregulation correlated with early PMN entry and later with PBL infiltration but was more protracted than both. The importance of E-selectin was confirmed by marked inhibition of PMN and PBL entry (up to > 60%) by F(ab')2 anti-E-selectin. Involvement of other molecules was illustrated by similar or greater inhibition with anti-CD18 F(ab')2. We conclude that, like CD18, E-selectin is necessary for most PMN and PBL infiltration but alone is insufficient, consistent with the involvement of several alternative multistep molecular mechanisms in this entry.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1216-1225 ◽  
Author(s):  
F Rosselli ◽  
J Sanceau ◽  
E Gluckman ◽  
J Wietzerbin ◽  
E Moustacchi

Abstract We have previously shown an unbalanced cytokine production in Fanconi anemia (FA) cells, ie, an underproduction of interleukin 6 (IL-6) during growth. Among a number of cytokines analyzed, the only other anomalies detected concern tumor necrosis factor alpha (TNF alpha). In comparison to normal cells, this cytokine is overproduced by FA lymphoblasts from the four genetic complementation groups. Indeed, up to an eight-fold increase in TNF alpha is observed in the growth medium of FA cells. Moreover, addition of anti-TNF alpha antibodies partially corrects the FA hypersensitivity to treatment by mitomycin C (MMC). Treatment of FA cells with IL-6, which partially restored an almost normal sensitivity to MMC of FA cells also reduces the TNF alpha overproduction in FA lymphoblasts. No anomalies at the molecular level (Southern and Northern blot analyses) are detected for the TNF alpha gene and its mRNA. We have investigated the in vivo situation by assaying TNF alpha levels in the serum from FA homozygotes and obligate heterozygotes. In contrast to normal healthy donors or to aplastic anemia patients in whom serum TNF alpha is present only in trace amounts, all 36 FA patients and 21 FA parents monitored show a significantly (P < .001) higher level of serum TNF alpha activity. Consequently, abnormal TNF alpha production seems to be associated with the FA genetic background.


2002 ◽  
Vol 9 (4) ◽  
pp. 892-897 ◽  
Author(s):  
Jean-San Chia ◽  
Huei-Ting Lien ◽  
Po-Ren Hsueh ◽  
Pei-Min Chen ◽  
Andy Sun ◽  
...  

ABSTRACT Production of proinflammatory cytokines is implicated in the pathogenesis of viridans streptococcus-induced α-streptococcal shock syndrome and infective endocarditis. Streptococcus mutans, one of the opportunistic pathogens causing infective endocarditis, was reported previously to stimulate monocytes and epithelial and endothelial cells in vitro to produce various cytokines. We found that glucosyltransferases (GTFs) GtfC and GtfD of S. mutans stimulated predominantly the production of interleukin-6 (IL-6) from T cells cultured in vitro. The level of IL-6 but not of tumor necrosis factor alpha in blood was significantly elevated when rats were injected intravenously with S. mutans GS-5, whereas IL-6 was detected at a much lower level when rats were challenged with NHS1DD, an isogenic mutant defective in the expression of GTFs. The serum IL-6 level was elevated in patients with endocarditis caused by different species of viridans streptococci which express GTF homologues. Affinity column-purified GTFs reduced the levels of detectable IL-2 of T cells stimulated by another bacterial antigen, tetanus toxoid. These results suggested that GTFs might modulate the production of Th1-type cytokines and that GTFs of S. mutans play a significant role in stimulating the production of the proinflammatory cytokine IL-6 in vivo.


Sign in / Sign up

Export Citation Format

Share Document