Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor–1 enhances their ability to engraft NOD/SCID mice

Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3454-3457 ◽  
Author(s):  
Hanno Glimm ◽  
Patrick Tang ◽  
Ian Clark-Lewis ◽  
Christof von Kalle ◽  
Connie Eaves

Abstract Ex vivo proliferation of hematopoietic stem cells (HSCs) is important for cellular and gene therapy but is limited by the observation that HSCs do not engraft as they transit S/G2/M. Recently identified candidate inhibitors of human HSC cycling are transforming growth factor-β1(TGF-β1) and stroma-derived factor–1 (SDF-1). To determine the ability of these factors to alter the transplantability of human HSCs proliferating in vitro, lin− cord blood cells were first cultured for 96 hours in serum-free medium containing Flt3 ligand, Steel factor, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. These cells were then transferred to medium containing Steel factor and thrombopoietin with or without SDF-1 and/or TGF-β1 for 48 hours. Exposure to SDF-1 but not TGF-β1 significantly increased (> 2-fold) the recovery of HSCs able to repopulate nonobese diabetic/severe combined immunodeficiency mice. These results suggest new strategies for improving the engraftment activity of HSCs stimulated to proliferate ex vivo.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 369-369
Author(s):  
Wolfram Goessling ◽  
Xiao Guan ◽  
Michael Dovey ◽  
Joseph Stegner ◽  
Myriam Armant ◽  
...  

Abstract Abstract 369 Hematopoietic stem cells (HSCs) comprise the base of the entire hematopoietic system and alone possess the ability to both self-renew and differentiate into all mature blood lineages, thereby maintaining immune function, tissue perfusion and hematopoietic homeostasis. HSCs are therapeutically valuable for the treatment of hematological malignances, immunodeficiencies and bone marrow failure. Prostaglandin (PG) E2 has been shown to enhance HSC engraftment in allogeneic murine transplantation models by our lab (North et al., Nature 2007) and others (Hoggatt et al., Blood 2009); PGE2 was additionally found to influence the balance of apoptosis and proliferation in the HSC population via modulation of wnt activity (Goessling et al., Cell 2009), and to modify CXCR4-responsive homing to the hematopoietic niche following transplantation (Hoggatt et al., Blood 2009). In order to translate the therapeutic potential of a stabilized version of PGE2, dmPGE2, we sought to determine the safety and efficacy of ex vivo dmPGE2 exposure in human cord blood (hCB) stem cells. Compared to matched control cord samples, no significant negative impact on hCB cell viability was observed following dmPGE2 treatment (10?M for 1 hour) using either fresh or frozen cord blood units; of note, the CD34+ stem and progenitor compartment seemed particularly able to tolerate the treatment protocol. To determine whether dmPGE2 treatment was not only safe, but potentially valuable for preserving hCB cell viability, apoptosis was measured by FACS analysis for 7AAD and AnnexinV in pooled CD34-enriched (CD34+) hCB samples treated in parallel with 1?M dmPGE2 or the vehicle control (DMSO); at 6 and 9 hours post exposure, cells treated with dmPGE2 showed a significant reduction in apoptosis compared to controls. Cell proliferation assays confirmed results seen in prior murine studies and demonstrated that dmPGE2 not only suppressed apoptosis, but enhanced HSC self-renewal. To determine if dmPGE2 exposure altered the functional characteristics of human cord blood samples, in vitro culture assays were conducted; pooled CD34+ samples were exposed over a time series (12 and 30 mins, 1, 3, 6 and 12 hours) to the vehicle control and dmPGE2 (1?M) then plated at limiting dilutions (2000, 800, 320). A significant 2-fold enhancement in total colony number (p<0.001) was found following dmPGE2 treatment of hCB cells. We have recently shown that PGE2 signals through cAMP to regulate wnt mediated control of HSC formation and function both in vitro and in vivo (Goessling et al., Cell 2009); to determine whether hCB cells increase cAMP activity in response to dmPGE2 treatment, fresh whole human cord blood units were exposed to increasing concentrations of dmPGE2 for 5, 15 and 30 mins, and intracellular cAMP levels were measured by chemiluminescence. dmPGE2 caused a dose-dependent increase in cAMP concentration, comparable to that of the known cAMP activator forskolin. Further, qPCR analysis of dmPGE2 treated CD34+ hCB cells demonstrated up regulation of camp-responsive elements, as well as genes indicative of wnt pathway activation (AXIN1), HSC induction (RUNX1) and homing (CXCR4). dmPGE2 was previously shown to enhance the multilineage serial transplantable long-term repopulating ability of murine HSCs (North et al., Nature 2007). To mimic clinical transplantation protocols, which typically utilize unmanipulated (non-lineage depleted, non-CD34 enriched) samples, fresh whole cord blood samples were employed for the initial xenotransplantation studies. Ex vivo dmPGE2 treatment significantly enhanced the number of engrafted recipients compared to matched controls (27/46 vs 13/42; *p=0.01) in comparative transplantation assays; use of purified CD34+ hCB cells for transplantation confirmed the effect of dmPGE2 on HSCs. These data suggest that treatment of hCB products with dmPGE2 will be both safe and effective in achieving expansion of HSCs for transplantation in the clinical setting; an FDA- approved phase 1 clinical trial evaluating dmPGE2 (FT1050, Fate Therapeutics) for this purpose is currently accruing patients at Dana-Farber/Partners Cancer Center. Disclosures: Goessling: Fate Therapeutics: Consultancy, Patents & Royalties. Zon:FATE Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Stemgent: Consultancy. North:Fate Therapeutics: Consultancy, Patents & Royalties.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1190-1190
Author(s):  
Trista E. North ◽  
Wolfram Goessling ◽  
Myriam Armant ◽  
Grace S. Kao ◽  
Leslie E. Silberstein ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are commonly used in transplantation therapy to rescue the hematopoietic and immune systems following systemic chemotherapy or irradiation. However, some patients receive inadequate numbers of HSCs and this often results in delayed reconstitution of hematopoiesis and immune function and associated toxicities. We previously demonstrated that a stabilized derivative of prostaglandin (PG) E2 increases vertebrate HSCs both in vivo and in vitro. 16,16-dimethyl PGE2 (dmPGE2) significantly increased HSCs during zebrafish embryogenesis and in the adult marrow following injury. Incubation of murine embryonic stem cells with dmPGE2 during embryoid body differentiation resulted in a dose-dependent increase in hematopoietic colonies, demonstrating that the function of PGE2 in HSC regulation is conserved in mammals. Finally, ex vivo treatment of murine bone marrow with dmPGE2 resulted in a 2-fold increase in engrafting cells in a limiting dilution competitive repopulation assay. No negative effects on serial transplantability of HSCs were observed in these animal models. To investigate the therapeutic potential of PGE2 for the amplification of blood stem cells, we exposed human cord blood (hCB) cells to dmPGE2 in vitro and measured the effects on stem and progenitor populations both in vitro and in vivo. Red cell depleted umbilical cord blood specimens, cryopreserved for clinical use, were thawed and divided for parallel processing. Ex vivo treatment of hCB cells for 1 hour with dmPGE2 in dextran/albumin had no negative impact on absolute cell count or the viability and relative distribution of both CD45 and CD34 positive cells compared to vehicle treated control hCB cells. Significantly, hCB treated with dmPGE2 produced enhanced numbers of GM and GEMM colonies in methylcellose CFU-C assays compared to controls. Human CB cells treated ex vivo with dmPGE2 for 1 hour and transplanted at a dose of 20 million live CD45+ cells per recipient were capable of repopulating NOD/SCID mice after sublethal irradiation. In comparative studies at 6 weeks post transplantation, human CD34+ and CD45+ cells could be detected in the marrow (>2%) of dmPGE2 treated (4/8) and control treated (1/6) recipients. Long-term and competitive transplantation experiments to assess the effect of dmPGE2 treatment on functional HSCs are currently in progress. Our data suggests that treatment of human cord blood products with dmPGE2 will be both safe and effective in achieving expansion of hematopoietic stem cells for transplantation in the clinical setting. TE North and W Goessling contributed equally to this work.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4185-4193 ◽  
Author(s):  
Hanno Glimm ◽  
IL-Hoan Oh ◽  
Connie J. Eaves

Abstract An understanding of mechanisms regulating hematopoietic stem cell engraftment is of pivotal importance to the clinical use of cultured and genetically modified transplants. Human cord blood (CB) cells with lymphomyeloid repopulating activity in NOD/SCID mice were recently shown to undergo multiple self-renewal divisions within 6 days in serum-free cultures containing Flt3-ligand, Steel factor, interleukin 3 (IL-3), IL-6, and granulocyte colony-stimulating factor. The present study shows that, on the fifth day, the transplantable stem cell activity is restricted to the G1fraction, even though both colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) in the same cultures are approximately equally distributed between G0/G1and S/G2/M. Interestingly, the G0 cells defined by their low levels of Hoechst 33342 and Pyronin Y staining, and reduced Ki67 and cyclin D expression (representing 21% of the cultured CB population) include some mature erythroid CFCs but very few primitive CFCs, LTC-ICs, or repopulating cells. Although these findings suggest a cell cycle–associated change in in vivo stem cell homing, the cultured G0/G1 and S/G2/M CD34+ CB cells exhibited no differences in levels of expression of VLA-4, VLA-5, or CXCR-4. Moreover, further incubation of these cells for 1 day in the presence of a concentration of transforming growth factor β1 that increased the G0/G1 fraction did not enhance detection of repopulating cells. The demonstration of a cell cycle–associated mechanism that selectively silences the transplantability of proliferating human hematopoietic stem cells poses both challenges and opportunities for the future improvement of ex vivo–manipulated grafts.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1068-1068
Author(s):  
Naoko Takebe ◽  
Thomas MacVittie ◽  
Xiangfei Cheng ◽  
Ann M. Farese ◽  
Emily Welty ◽  
...  

Abstract Down-modulation of surface CXCR4, a G-protein-coupled receptor, in hematopoietic stem cells (HSCs) undergoing ex vivo expansion culturing is considered to be one of the major causes of marrow reconstitution failure, possibly due to an HSC homing defect. Recently, it has been reported that severe combined immunodeficiency (SCID)-repopulating cells (SRC) were expanded from the CD34-enriched human adult bone marrow (ABM) or cord blood (CB) hematopoietic stem cells (HSC) using a human brain endothelial cell (HUBEC) co-culture system. We found that primitive cord blood cells expressing surface CXCR4 (82+5%) lost this capability significantly during 7 days of ex vivo expansion in the HUBEC co-culture containing the cytokines stem cell factor (SCF), flt-3, interleukin (IL)-6, IL-3, and granulocyte macrophage colony stimulating factor (GM-CSF). Expression levels of other surface proteins relevant to HSC homing, such as CD49d, CD95, CD26, or CD11a, were not down-modulated. We hypothesized that CXCR4 down-regulation was caused by a receptor internalization and tested several methods to reverse CXCR4 internalization back to the surface, such as elimination of GM-CSF in the culture media, performing a non-contact culture using the transwell, or adding either 0.3Mor 0.4M sucrose, or 25μg/ml chlorpromazine (CPZ), 24 hours prior to the analysis. CPZ and sucrose are known inhibitors of the cytokine-induced endocytosis of CXCR4 in neutrophils (Bruhl H. et al. Eur J Immunol 2003). Interestingly, 0.4M sucrose showed approximately a 2-fold increase of surface CXCR4 expression on CB CD34+ cells by flow cytometry analysis. CPZ and 0.3M sucrose showed a moderate increase expression of CXCR4. Using a transwell HUBEC co-culture system, CXCR4 surface expression on CD34+ cells was down-regulated during the ex vivo culture. In vitro HSC migration test showed 3.1-fold increase in migration compared to the control after incubation of HSC with 0.1M sucrose for 16 hours prior to the in vitro migration study. Eliminating GM-CSF from the cytokine cocktail or adding MG132 increased migration 1.36- and 1.2-fold compared to the control. We are currently performing an in vivo homing assay using nonobese diabetic (NOD)-SCID mice. In conclusion, the HUBEC ex vivo culture system down-regulates surface CXCR4 in human cord blood HSC. The mechanism of CXCR4 surface down regulation may be receptor internalization by cytokines. Sucrose may be useful in attenuation of CXCR4 surface expression in CD34+ HSC by inhibition of receptor internalization via clathrin-coated pits.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4039-4039
Author(s):  
Ri Zhang ◽  
Wenjin Gao ◽  
Yuanyuan Sun ◽  
Jingcheng Miao ◽  
Xueguang Zhang

Abstract Transforming growth factor-beta 1 (TGF-β1) is known to maintain primitive human hematopoietic stem/progenitor cells with polyfunctional role in a quiescent state and CD133 is a new stem cell antigen that may provide an alternative to CD34 for the selection and expansion of hematopoietic cells for transplantation. To investigate the specific effect of TGF-β1 on proliferation and differentiation of CD133 positive cells derived from umbilical cord blood (UCB) during short-term culture in vitro, CD133 positive cells from 20 fresh UCB samples were selected using Miltenyi Biotec’s CliniMACS separation device and were cultured in IMDM medium with 20% FCS in the presence of a cytokine combination of SCF, IL-6, thrombopoietin, IL-3 and Flt3-ligand for up to 2 weeks and TGF-β1 with low concentration was also added to the mediumon day 4. The proliferative response was assessed at day 7, day 10 and day 14 by evaluating the following parameters: nucleated cells (NC), clonogenic progenitors (CFU-GEMM,CFU-GM and BFU-E), and immunophenotypes (CD133 and CD34). The results showed that efficacious expansion of various hematopoietic stem/progenitor cells was constantly observed during the culture. The fold expansion of NC on day7, day10 and day14 expansion were 33.59,224.26 and 613.48, respectively. The fold expansion of CFU-GEMM, CFU-GM and BFU-E on day 10 were 24.89, 41.62 and 49.28, respectively, obviously higher than that without ex vivo expansion (P<0.05). The expansions of CD133+, CD133+CD34+ and CD34+ subpopulation on day 14 were up to 25.83-fold, 16.16-fold and 60.54-fold, respectively. Furthermore the expansion systems with TGF-β1 showed more CD133+ cells than control at every time points. Our datas suggested that the CD133+ cells from human UCB have great expansion potential for ex-vivo expansion. The low concentration of TGF-β1 may delay over-differentiation of hematopoietic stem/progenitor cells.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4185-4193 ◽  
Author(s):  
Hanno Glimm ◽  
IL-Hoan Oh ◽  
Connie J. Eaves

An understanding of mechanisms regulating hematopoietic stem cell engraftment is of pivotal importance to the clinical use of cultured and genetically modified transplants. Human cord blood (CB) cells with lymphomyeloid repopulating activity in NOD/SCID mice were recently shown to undergo multiple self-renewal divisions within 6 days in serum-free cultures containing Flt3-ligand, Steel factor, interleukin 3 (IL-3), IL-6, and granulocyte colony-stimulating factor. The present study shows that, on the fifth day, the transplantable stem cell activity is restricted to the G1fraction, even though both colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) in the same cultures are approximately equally distributed between G0/G1and S/G2/M. Interestingly, the G0 cells defined by their low levels of Hoechst 33342 and Pyronin Y staining, and reduced Ki67 and cyclin D expression (representing 21% of the cultured CB population) include some mature erythroid CFCs but very few primitive CFCs, LTC-ICs, or repopulating cells. Although these findings suggest a cell cycle–associated change in in vivo stem cell homing, the cultured G0/G1 and S/G2/M CD34+ CB cells exhibited no differences in levels of expression of VLA-4, VLA-5, or CXCR-4. Moreover, further incubation of these cells for 1 day in the presence of a concentration of transforming growth factor β1 that increased the G0/G1 fraction did not enhance detection of repopulating cells. The demonstration of a cell cycle–associated mechanism that selectively silences the transplantability of proliferating human hematopoietic stem cells poses both challenges and opportunities for the future improvement of ex vivo–manipulated grafts.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1431-1439 ◽  
Author(s):  
Ross N. La Motte-Mohs ◽  
Elaine Herer ◽  
Juan Carlos Zúñiga-Pflücker

AbstractThe Notch signaling pathway plays a key role at several stages of T-lymphocyte differentiation. However, it remained unclear whether signals induced by the Notch ligand Delta-like 1 could support full T-cell differentiation from a defined source of human hematopoietic stem cells (HSCs) in vitro. Here, we show that human cord blood–derived HSCs cultured on Delta-like 1–expressing OP9 stromal cells undergo efficient T-cell lineage commitment and sustained T-cell differentiation. A normal stage-specific program of T-cell development was observed, including the generation of CD4 and CD8 αβ–T-cell receptor (TCR)–bearing cells. Induction of T-cell differentiation was dependent on the expression of Delta-like 1 by the OP9 cells. Stimulation of the in vitro–differentiated T cells by TCR engagement induced the expression of T-cell activation markers and costimulatory receptors. These results establish an efficient in vitro coculture system for the generation of T cells from human HSCs, providing a new avenue for the study of early T-cell differentiation and function.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Ingunn Dybedal ◽  
Liping Yang ◽  
David Bryder ◽  
Ingbritt Aastrand-Grundstrom ◽  
Karin Leandersson ◽  
...  

Abstract The Fas receptor and its ligand have been implicated in mediating the bone marrow (BM) suppression observed in graft-versus-host disease and a number of other BM-failure syndromes. However, previous studies have suggested that Fas is probably not expressed on human hematopoietic stem cells (HSCs), but up-regulated as a consequence of their commitment and differentiation, suggesting that progenitors or differentiated blood cells, rather than HSCs, are the targets of Fas-mediated suppression. The present studies confirm that candidate HSCs in human cord blood and BM lack constitutive expression of Fas, but demonstrate that Fas expression on CD34+ progenitor and stem cells is correlated to their cell cycle and activation status. With the use of recently developed in vitro conditions promoting HSC self-renewing divisions, Fas was up-regulated on virtually all HSCs capable of multilineage reconstituting nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice in vivo, as well as on long-term culture-initiating cells (LTC-ICs). Similarly, in vivo cycling of NOD-SCID repopulating cells upon transplantation, resulted in up-regulation of Fas expression. However, repopulating HSCs expressing high levels of Fas remained highly resistant to Fas-mediated suppression, and HSC function was compromised only upon coactivation with tumor necrosis factor. Thus, reconstituting human HSCs up-regulate Fas expression upon active cycling, demonstrating that HSCs could be targets for Fas-mediated BM suppression. (Blood. 2003;102: 118-126)


Sign in / Sign up

Export Citation Format

Share Document