Quantification of follicle stimulating hormone (follitropin alfa): is in vivo bioassay still relevant in the recombinant age?

2003 ◽  
Vol 19 (1) ◽  
pp. 41-46 ◽  
Author(s):  
R. Driebergen ◽  
G. Baer
2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 574-574
Author(s):  
Koichiro Gen ◽  
Jon T. Dickey ◽  
J. Adam Luckenbach ◽  
Yoji Yamamoto ◽  
Olga Mirochnitchenko ◽  
...  

1981 ◽  
Vol 91 (2) ◽  
pp. 353-362 ◽  
Author(s):  
P. L. STORRING ◽  
A. A. ZAIDI ◽  
Y. G. MISTRY ◽  
BERIT FRÖYSA ◽  
BRIDGET E. STENNING ◽  
...  

The FSH potencies of 12 preparations of highly purified human pituitary FSH, originating from six different laboratories, were determined by in-vivo and in-vitro bioassays and by immunoassay in terms of the First International Reference Preparation of Human Pituitary Gonadotrophins (FSH and LH) for Bioassay (IRP; coded 69/104). The contamination of these FSH preparations with LH was also determined. Estimates of protein content were based on the absorbance at 280 nm of solutions of the preparations, assuming that A1%1 cm 280 = 10. The FSH potencies varied between different preparations from 827 i.u./mg to 13 100 i.u./mg by in-vivo bioassay; from 2930 to 14 600 i.u./mg by in-vitro bioassay and from 1680 to 5690 i.u./mg by immunoassay. The ratios of in-vivo biological activity relative to in-vitro biological activity and to immunoreactivity respectively varied between preparations from 0·06 to 2·3 and from 0·15 to 4·1, and there was a significant positive correlation between each of these ratios and the in-vivo biological potency of the preparations; such differences could be due to varying degrees of sialylation between preparations. On the other hand the ratios of in-vitro biological activity to immunoreactivity between preparations were fairly constant (approx. 2). The excess biological activity relative to immunoreactivity observed, in terms of the IRP, in all these materials is consistent with recent findings of some immunoreactive FSH in the IRP unassociated with biological activity. These data did not demonstrate any significant advantage, in terms of FSH in-vivo biological potency, from the use of fresh-frozen rather than acetone-dried pituitary glands for the isolation of FSH. Contamination of all these preparations with LH appeared to be less than 3% (w/w), as determined by in-vitro bioassay and by immunoassay. The results of this study are discussed in relation to the selection of material for an international reference preparation for immunoassay and attention is drawn to the value of high in-vivo biological FSH potency as a criterion of the identity of a preparation as well as of its freedom from contaminants without FSH biological activity.


1977 ◽  
Vol 74 (3) ◽  
pp. 441-447 ◽  
Author(s):  
PAUL LICHT ◽  
ANTONELLA BONA GALLO ◽  
ANNE STOCKELL HARTREE ◽  
RATNA C. SHOWNKEEN

SUMMARY The actions of human follicle-stimulating hormone (hFSH) and its β-subunit were examined in several assays in reptiles, including effects on lizard testicular activity (growth and androgen production) in vivo, and stimulation of androgen production by snake testes and competition for binding of 125I-labelled hFSH in lizards and snakes in vitro. Binding was also examined with mammalian tissues. The hFSH was highly steroidogenic in the snake and lizard; otherwise results were similar to those observed in mammals. In all cases, the potency of the β-subunit was only a few per cent of the intact hormone. The potency of hFSH in vivo compared with NIH-FSH ovine standards was several 100 times greater than in vitro. Results for stimulation of androgen production in vivo closely paralleled those for binding assays in both reptiles and mammals. In contrast to previous results for ovine FSH β-subunit, human FSH β-subunit has little if any FSH biological activity in reptiles.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4784-4793 ◽  
Author(s):  
Yogeshwar Makanji ◽  
Peter D. Temple-Smith ◽  
Kelly L. Walton ◽  
Craig A. Harrison ◽  
David M. Robertson

Sign in / Sign up

Export Citation Format

Share Document