scholarly journals INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and Wnt signaling

2009 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
Stephanie Filleur ◽  
Jennifer Hirsch ◽  
Aline Wille ◽  
Margarete Schön ◽  
Christian Sell ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Nurul Azwa Abd Wahab ◽  
Faridah Abas ◽  
Iekhsan Othman ◽  
Rakesh Naidu

Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.


2011 ◽  
Vol 300 (5) ◽  
pp. E902-E908 ◽  
Author(s):  
Fu-Ning Hsu ◽  
Min-Shiou Yang ◽  
Eugene Lin ◽  
Chun-Fu Tseng ◽  
Ho Lin

Androgen ablation therapy is the most common strategy for suppressing prostate cancer progression; however, tumor cells eventually escape androgen dependence and progress to an androgen-independent phase. The androgen receptor (AR) plays a pivotal role in this transition. To address this transition mystery in prostate cancer, we established an androgen-independent prostate cancer cell line (LNCaPdcc), by long-term screening of LNCaP cells in androgen-deprived conditions, to investigate changes of molecular mechanisms before and after androgen withdrawal. We found that LNCaPdcc cells displayed a neuroendocrine morphology, less aggressive growth, and lower expression levels of cell cycle-related factors, although the cell cycle distribution was similar to parental LNCaP cells. Notably, higher protein expression of AR, phospho-Ser81-AR, and PSA in LNCaPdcc cells were observed. The nuclear distribution and protein stability of AR increased in LNCaPdcc cells. In addition, cell proliferation results exhibited the biphasic nature of the androgen (R1881) effect in two cell lines. On the other hand, LNCaPdcc cells expressed higher levels of Her2, phospho-Tyr1221/1222-Her2, ErbB3, and ErbB4 proteins than parental LNCaP cells. These two cell lines exhibited distinct responses to Her2 activation (by heregulin treatment) on Her2 phosphorylation and Her2 inhibition (by AG825 or Herceptin treatments) on proliferation. In addition, the Her2 inhibitor more effectively caused AR degradation and diminished AR Ser81 phosphorylation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays an important role in the support of AR protein stability in the transition of androgen requirement in prostate cancer cells. We hope these findings will provide novel insight into the treatment of hormone-refractory prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document