scholarly journals Malaria vector control practices in an irrigated rice agro-ecosystem in central Kenya and implications for malaria control

2008 ◽  
Vol 7 (1) ◽  
Author(s):  
Peter N Ng'ang'a ◽  
Josephat Shililu ◽  
Gayathri Jayasinghe ◽  
Violet Kimani ◽  
Charity Kabutha ◽  
...  
Epidemiology ◽  
2008 ◽  
Vol 19 (1) ◽  
pp. S215-S216
Author(s):  
P Ngáng'a ◽  
J Shililu ◽  
V K Kimani ◽  
G Jayasinghee ◽  
C Kabutha

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Christophe Boëte ◽  
Sakib Burza ◽  
Estrella Lasry ◽  
Silvia Moriana ◽  
William Robertson

Abstract Background The use and implementation of novel tools for malaria control such as long lasting impregnated bednets (LLINs) and Indoor Residual Spraying (IRS) over the last decade has contributed to a substantial reduction in malaria burden globally. However numerous challenges exist particularly in relation to vector control in emergency settings. This study seeks to explore expert opinion on the utility of existing tools within the emergency context setting and to better understand the attitude towards emerging and innovative tools (including Genetically Modified Mosquitoes) to augment current approaches. Methods 80 experts in the field of malaria and vector control were invited to participate in a two-round Delphi survey. They were selected through a combination of literature (academic and policy publications) review and snowball sampling reflecting a range of relevant backgrounds including vector control experts, malaria programme managers and emergency response specialists. The survey was conducted online through a questionnaire including the possibility for free text entry, and concentrated on the following topics: Utility and sustainability of current vector control tools, both in and outside emergency settings Feasibility, utility and challenges of emerging vector control tools, both in and outside emergency settings Current and unmet research priorities in malaria vector control and in malaria control in general. Results 37 experts completed the first round and 31 completed the second round of the survey. There was a stronger consensus about the increased utility of LLIN compared to IRS in all settings, while insecticide-treated covers and blankets ranked very high only in emergency settings. When considering the combination of tools, the ones deemed most interesting always involved LLINs and IRS regardless of the setting, and the acceptability and the efficacy at reducing transmission are essential characteristics. Regarding perceptions of tools currently under development, consensus was towards improvement of existing tools rather than investing in novel approaches and the majority of respondents expressed distrust for genetic approaches. Conclusion Malaria vector control experts expressed more confidence for tools whose efficacy is backed up by epidemiological evidence, hence a preference for the improvement rather than the combination of existing tools. Moreover, while several novel tools are under development, the majority of innovative approaches did not receive support, particularly in emergency settings. Stakeholders involved in the development of novel tools should involve earlier and raise awareness of the potential effectiveness amongst a wider range of experts within the malaria community to increase acceptability and improve early adoption once the evidence base is established.


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Michael T. Gebreslasie ◽  
Ides Bauwens

The aim of this study is to assess the capacity gaps and requirements of Earth observation (EO) and related technologies for malaria vector control and management in the Lubombo Spatial Development Initiative regions of South Africa, Swaziland and Mozambique. In order to achieve the core objective of this study, available EO data (including main characteristics and resources required to utilize them) and their potential applications for malaria epidemiology are reviewed. In addition, a survey was conducted to assess the availability of human and facility resources to operate EO and related technologies for control and management of the malaria control programs in these countries resulting in an analysis of capacity gaps, priorities and requirements. Earth observation in malaria vector control and management has two different applications: i) collection of relevant remotely sensed data for epidemiological use; and ii) direct support of ongoing malaria vector control activities. All malaria control programs and institutions recognize the significance of EO products to detect mosquito vector habitats, to monitor environmental parameters affecting mosquito vector populations as well as house mapping and distribution of information supporting residual spray planning and monitoring. It was found that only the malaria research unit (MRU) of the medical research council (MRC) in South Africa and the national malaria control program (MCP) in Swaziland currently have a fully functional geographic information systems (GIS), whereas the other surveyed MCPs in South Africa and Mozambique currently do not have this in place. Earth observation skills only exist in MRU of MRC, while spatial epidemiology is scarce in all institutions, which was identified as major gap. The survey has also confirmed that EO and GIS technologies have enormous potential as sources of spatial data and as analytical frameworks for malaria vector control. It is therefore evident that planning and management require capacity building with respect to GIS, EO and spatial epidemiology.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Henry Ddumba Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18–0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49–0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002–0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005–0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07–0.33, p < 0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Fekadu Massebo ◽  
Meshesha Balkew ◽  
Teshome Gebre-Michael ◽  
Bernt Lindtjørn

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mary Nyangi ◽  
Elizabeth Kigondu ◽  
Beatrice Irungu ◽  
Margaret Nganga ◽  
Anthony Gachanja ◽  
...  

Abstract Background Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya. Method The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical concentration was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. Results After 18 months of use, 96.9% (95% CI: 95.2–98.6%) of the distributed nets were still available. Regarding net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43–52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1–4], and most holes were located on the lower part of the nets, [median 3 (IQR 2–5)]. Only 15% of the nets with holes had been repaired. The median concentration for α-cypermethrin was 7.15 mg/m2 (IQR 4.25–15.31) and 0.00 mg/g (IQR 0.00–1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N = 389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103). Conclusion More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. Standard procedure for field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest is recommended.


Sign in / Sign up

Export Citation Format

Share Document