scholarly journals Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET

2012 ◽  
Vol 10 (1) ◽  
pp. 21 ◽  
Author(s):  
Shuichi Matsuyama ◽  
Takatoshi Kojima ◽  
Satoru Kato ◽  
Koji Kimura
Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1773 ◽  
Author(s):  
Michela Alfarano ◽  
Donato Pastore ◽  
Vincenzo Fogliano ◽  
Casper Schalkwijk ◽  
Teresa Oliviero

Studies demonstrate that the potential health-beneficial effect of sulforaphane (SR), a compound formed in broccoli, is the result of a number of mechanisms including upregulation of phase two detoxification enzymes. Recent studies suggest that SR increases expression/activity of glyoxalase 1 (Glo1), an enzyme involved in the degradation of methylglyoxal, is major precursor of advanced glycation end products. Those compounds are associated with diabetes complications and other age-related diseases. In this study, the effect of SR on the expression/activity of Glo1 in peripheral blood mononuclear cells (PBMCs) from 8 healthy volunteers was investigated. PBMCs were isolated and incubated with SR (2.5 μM-concentration achievable by consuming a broccoli portion) for 24 h and 48 h. Glo1 activity/expression, reduced glutathione (GSH), and glutathione-S-transferase gene expression were measured. Glo1 activity was not affected while after 48 h a slight but significant increase of its gene expression (1.03-fold) was observed. GSTP1 expression slightly increased after 24 h incubation (1.08-fold) while the expressions of isoform GSTT2 and GSTM2 were below the limit of detection. GSH sharply decreased, suggesting the formation of GSH-SR adducts that may have an impact SR availability. Those results suggest that a regular exposure to SR by broccoli consumption or SR supplements may enhance Glo1.


2021 ◽  
Author(s):  
Magdalena Maria Jurkiewicz ◽  
Anett Müller-Alcazar ◽  
Dirk Moser ◽  
Indralatha Jayatilaka ◽  
Anatoly Mikhailik ◽  
...  

Abstract Objective: The impact of psychosocial stress on a variety of negative health outcomes is well documented, with current research efforts directed at possible mechanisms. Here, we focused on a potential mechanism involving differential expression of mRNA and microRNA in response to acute psychosocial stress. We utilized a validated behavioral paradigm, the Trier Social Stress Test (TSST), to induce acute psychosocial stress in a cohort of volunteers. Stress reactivity was assessed repeatedly during the TSST using saliva samples that were analyzed for levels of cortisol. Peripheral blood mononuclear cells were extracted from blood drawn at baseline and at two time points following the stress paradigm. Total RNA was extracted, and mRNA and microRNA microarrays were utilized to assess within-subject changes in gene expression between baseline and the two post-stressor time points. Results: For microarray gene expression analysis, we focused on 12 participants who showed a robust cortisol response to the task, as an indicator of robust HPA-axis activation. We discovered a set of mRNAs and miRNAs that exhibited dynamic expression change in response to the TSST in peripheral blood mononuclear cells, further characterizing the link between psychosocial stress and cellular response mechanisms.


Sign in / Sign up

Export Citation Format

Share Document