scholarly journals Effects of the electrical conductivity and orientation of silicon substrate on the synthesis of multi-walled carbon nanotubes by thermal chemical vapor deposition

2013 ◽  
Vol 8 (1) ◽  
pp. 110 ◽  
Author(s):  
Hyonkwang Choi ◽  
Jaeseok Gong ◽  
Yeongjin Lim ◽  
Ki Hong Im ◽  
Minhyon Jeon
2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Myung Gwan Hahm ◽  
Young-Kyun Kwon ◽  
Ahmed Busnaina ◽  
Yung Joon Jung

Due to their unique one-dimensional nanostructure along with excellent mechanical, electrical, and optical properties, carbon nanotubes (CNTs) become a promising material for diverse nanotechnology applications. However, large-scale and structure controlled synthesis of CNTs still have many difficulties due to the lack of understanding of the fundamental growth mechanism of CNTs, as well as the difficulty of controlling atomic-scale physical and chemical reactions during the nanotube growth process. Especially, controlling the number of graphene wall, diameter, and chirality of CNTs are the most important issues that need to be solved to harness the full potential of CNTs. Here we report the large-scale selective synthesis of vertically aligned single walled carbon nanotubes (SWNTs) and double walled carbon nanotubes (DWNTs) by controlling the size of catalyst nanoparticles in the highly effective oxygen assisted thermal chemical vapor deposition (CVD) process. We also demonstrate a simple but powerful strategy for synthesizing ultrahigh density and diameter selected vertically aligned SWNTs through the precise control of carbon flow during a thermal CVD process.


2008 ◽  
Vol 14 (S2) ◽  
pp. 304-305
Author(s):  
M Ellis ◽  
T Jutarosaga ◽  
S Smith ◽  
Y Wei ◽  
S Seraphin

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


Sign in / Sign up

Export Citation Format

Share Document