scholarly journals 0435. Pressure-support ventilation compared to pressure-controlled ventilation in experimental emphysema

2014 ◽  
Vol 2 (S1) ◽  
Author(s):  
GA Padilha ◽  
I Henriques ◽  
L Moraes ◽  
MV Oliveira ◽  
IP Ramos ◽  
...  
2020 ◽  
Vol 132 (2) ◽  
pp. 307-320 ◽  
Author(s):  
Eliete F. Pinto ◽  
Raquel S. Santos ◽  
Mariana A. Antunes ◽  
Ligia A. Maia ◽  
Gisele A. Padilha ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Pressure-support ventilation may worsen lung damage due to increased dynamic transpulmonary driving pressure. The authors hypothesized that, at the same tidal volume (VT) and dynamic transpulmonary driving pressure, pressure-support and pressure-controlled ventilation would yield comparable lung damage in mild lung injury. Methods Male Wistar rats received endotoxin intratracheally and, after 24 h, were ventilated in pressure-support mode. Rats were then randomized to 2 h of pressure-controlled ventilation with VT, dynamic transpulmonary driving pressure, dynamic transpulmonary driving pressure, and inspiratory time similar to those of pressure-support ventilation. The primary outcome was the difference in dynamic transpulmonary driving pressure between pressure-support and pressure-controlled ventilation at similar VT; secondary outcomes were lung and diaphragm damage. Results At VT = 6 ml/kg, dynamic transpulmonary driving pressure was higher in pressure-support than pressure-controlled ventilation (12.0 ± 2.2 vs. 8.0 ± 1.8 cm H2O), whereas static transpulmonary driving pressure did not differ (6.7 ± 0.6 vs. 7.0 ± 0.3 cm H2O). Diffuse alveolar damage score and gene expression of markers associated with lung inflammation (interleukin-6), alveolar-stretch (amphiregulin), epithelial cell damage (club cell protein 16), and fibrogenesis (metalloproteinase-9 and type III procollagen), as well as diaphragm inflammation (tumor necrosis factor-α) and proteolysis (muscle RING-finger-1) were comparable between groups. At similar dynamic transpulmonary driving pressure, as well as dynamic transpulmonary driving pressure and inspiratory time, pressure-controlled ventilation increased VT, static transpulmonary driving pressure, diffuse alveolar damage score, and gene expression of markers of lung inflammation, alveolar stretch, fibrogenesis, diaphragm inflammation, and proteolysis compared to pressure-support ventilation. Conclusions In the mild lung injury model use herein, at the same VT, pressure-support compared to pressure-controlled ventilation did not affect biologic markers. However, pressure-support ventilation was associated with a major difference between static and dynamic transpulmonary driving pressure; when the same dynamic transpulmonary driving pressure and inspiratory time were used for pressure-controlled ventilation, greater lung and diaphragm injury occurred compared to pressure-support ventilation.


Sign in / Sign up

Export Citation Format

Share Document