scholarly journals Synergistic effect of folate-conjugated polymers and 5-fluorouracil in the treatment of colon cancer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriela Siemiaszko ◽  
Katarzyna Niemirowicz-Laskowska ◽  
Karolina H. Markiewicz ◽  
Iwona Misztalewska-Turkowicz ◽  
Ewelina Dudź ◽  
...  

Abstract Background In recent years, targeted drug delivery strategies have received special attention from the scientific world due to advantages such as more effective therapy and reduction of side effects. The principle of operation is delayed excretion from the bloodstream of the drug delivery system compared to the drug itself, as well as facilitated penetration into diseased cells thanks to the use of ligands recognized by appropriate receptors. Particularly interesting drug carriers are amphiphilic copolymers that form nano-sized micelles with a drug, which can release the drug at a specific place in the body under the influence of appropriate stimuli. Results We describe the synthesis of the diblock polymer, poly(2-hydroxyethyl acrylate)-b-poly(N-vinylcaprolactam) using RAFT/MADIX (Reversible Addition-Fragmentation chain Transfer/MAcromolecular Design by Interchange of Xanthate) controlled polymerization affording polymers with good dispersity according to SEC (Size-Exclusion Chromatography). Some post-modifications of the polymer with folic acid were then performed as evidenced by NMR (Nuclear Magnetic Resonance), UV–Vis (UltraViolet–Visible) and FT-IR (Fourier-Transform Infrared) spectroscopy, and TGA (ThermoGravimetric Analysis). The formation of stable micellar systems from polymers with and without the drug, 5-fluorouracil, was confirmed by DLS (Dynamic Light Scattering) and zeta potential measurements, and TEM (Transmission Eelectron Microscopy) imaging. Finally, the cloud point of the polymers was investigated, which turned out to be close to the temperature of the human body. Most importantly, these micellar systems have been explored as a drug delivery system against colon cancer, showing increased cytotoxicity compared to the drug alone. This effect was achieved due to the easier cellular uptake by the interaction of folic acid and its receptors on the surface of cancer cells. Conclusions The presented results constitute a solid foundation for the implementation of a nano-sized drug delivery system containing folic acid for practical use in the treatment of drug-resistant cancer, as well as more effective therapy with fewer side effects. Graphical Abstract

Author(s):  
Diksha Sharma ◽  
Abhishek Sharma

  The drug delivery system has been advanced to release the drug according to the body requirement during the entire period of treatment and also for the delivery at the targeted site. Several novel drug delivery systems have emerged encompassing different route of administration to achieve controlled and targeted drug delivery, magnetic microsphere carrier being one of them. Magnetic microsphere is an alternative to traditional radiation methods. As the traditional radiation methods use highly penetrating radiation that is absorbed throughout the body and cause side effects hence its use is limited. Therefore, a safe and effective alternate is needed like magnetic microsphere. The excessive circulating drug particles are minimized by this delivery system. Moreover, the aim of specific targeting is to enhance the effectiveness of drug delivery and at the same time to lessen the toxicity and side effects. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microsphere are chitosan, dextran, etc. One of the most utilized magnetic microspheres is serum albumine whether from human or other suitable animals. Drug release from the albumin microsphere can be controlled by various stabilization procedures. Overall, the targeted magnetic microsphere is much valuable novel drug delivery system for what more work have to be done. By knowing the importance of all this, the present paper reviews the mechanism, preparation, and applications of magnetic microspheres. As the targeted drug delivery system implies selective and effective localization of drug into the target at therapeutic concentrations with limited access to non-target sites. Magnetic microspheres hold great promises for reaching the goal of controlled and site-specific drug delivery.


Author(s):  
Elahe Darvishi ◽  
Mahsa Minadi ◽  
Somayeh Mirsadeghi ◽  
Behrang Shiri

Introduction: Much research has been carried out to improve drug delivery and targeted drug delivery to the body in order to minimize side effects, provide controlled delivery of the drug to the desired location and to achieve optimal therapeutic effects. Zeolitic imidazolate-8 (ZIF-8) is a subset of MOFs that are biocompatible, stable in the aquatic environment and have adjustable porosity. In addition, at pHs 5 or 6, the bond between imidazolate-zinc ions disappears and releases the drug. In this project, ZIF-8 was used as a curcumin carrier to improve the physicochemical properties and enhance the efficacy of lipophilic drugs in the treatment of cancer. Methods: This research was a basic experimental study. ZIF-8 nanoparticles were fabricated by co-precipitation method. In addition, to prove their pH sensitivity, curcumin was first encapsulated in situ in ZIF-8 and characterized by XRD, SEM, TEM, DLS methods. Then its release was investigated at two pH of five and 7.4 saline phosphate buffer. Finally, In vitro study by MTT assay was performed on prostate cancer cell line (PC3). Data were compared by analysis of variance (ANOVA) using SPSS version 16 software. Results: After characterization of the nanoparticles by the mentioned methods, it was found that the nanoparticle dimensions were between 80-60 nm and the nanoparticle dimensions with curcumin were between 120-110 nm. In addition, in the synthesis of ZIF-8 nanoparticles, %72 of the drug was loaded, which is an acceptable amount. Conclusion: These nanoparticles showed high capacity in the treatment of prostate cancer and minimal damage to healthy cells. It can be said that using this formulation for targeted drug delivery of cancer not only reduces the side effects of anti-cancer drugs but also increases their effectiveness and can also be used to deliver low-soluble or insoluble drugs in biological environments.


Nano LIFE ◽  
2021 ◽  
Vol 11 (02) ◽  
pp. 2150001
Author(s):  
Yasaman Hamedani ◽  
Murugabaskar Balan ◽  
Soumitro Pal ◽  
Sankha Bhowmick

Delivery of therapeutic compounds to the diseased area in the body with minimized adverse effects is the underlying objective behind development of advanced drug delivery systems. Providing disease-specific release patterns is the ultimate goal of any drug delivery system. Electrospinning has been widely used for nanofiber fabrication. Having high aspect ratio and similarity to the extracellular matrix in the body make electrospun nanofibers a great candidate to be used as drug delivery implants. In this study, we report electrospinning to be a tunable technique capable of providing engineered, disease-specific drug release patterns. Using “one factor at a time” and “central composite design” techniques, we respectively demonstrate flow rate and applied voltage to be the two most significant parameters (with [Formula: see text]-values of 512.48 and 42.31) affecting the final fiber diameter, and capillary-to-collector distance as the least important one, by evaluating their influence, individually and combined, on the morphology of electrospun Poly (Lactide-co-Glycolide acid) nanofibers. Using the same two techniques, we also show that hydrophobicity of the polymeric fibrous scaffold, measured by water contact angle (WCA) with the [Formula: see text]-value of 376.44, is the main factor to consider when designing an electrospun fibrous drug delivery system for a specific disease, while fiber diameter can further modulate the release pattern of the drug from hydrophobic polymeric nanofibers. We finally support our hypothesis by comparing our findings with analysis of data derived from the literature. Taken together, our findings suggest electrospinning to be a tunable technique capable of providing various release patterns for any small molecular weight drug on the basis of the requirements of the diseases to be treated.


2019 ◽  
Vol 107 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Yousef Fazaeli ◽  
Mohammad Amin Hosseini ◽  
Mohammadreza Afrasyabi ◽  
Parviz Ashtari

Abstract Silica nanoparticles (SNPs) are known as intrinsic radiolabeling agents and offer a fast and reliable approach to deliver theranostic agents into targeted organs. Radiolabeled amorphous silica nanoparticles are of great interest to radiation oncology communities. In order to improve the performance of these nano materials in cancer diagnosis and treatment, their inherent properties, such as surface area and the ability to accumulate in cancer cells, should be enhanced. Pyridine functionalized mesoporous silica MCM-41 is known as a potential anticancer-drug delivery system with high suface area. In thiswork, in order to produce an image-guided drug delivery system for diagnostic applications, [68Ga] radionuclide was grafted on pyridine functionalized MCM-41. The nanoparticles were assessed with atomic force microscopy (AFM), paper chromatography, X-ray diffraction, FTIR spectroscopy, CHN and TGA/DTA analyses. The pharmacokinetic profile evaluation of the radiolabeled nano silica, [68Ga]-Py-Butyl@MCM-41, was done in Fibrosarcoma tumor-bearing mice. This labeled nanocomposite with appropriate blood circulation in body, high structural stability, high tumor/blood ID/g% ratio and fast excretion from the body can be proposed as an efficient nano engineered composite for upcoming tumor targeting/imaging nanotechnology-based applications.


Nanomedicine ◽  
2019 ◽  
Vol 14 (15) ◽  
pp. 2011-2025 ◽  
Author(s):  
Zhen Li ◽  
Jialong Fan ◽  
Chunyi Tong ◽  
Hongyan Zhou ◽  
Wenmiao Wang ◽  
...  

Aim: Constructing a new drug-delivery system using carboxylated graphene quantum dots (cGQDs) for tumor chemotherapy in vivo. Materials & methods: A drug-delivery system was synthesized through a crosslink reaction of cGQDs, NH2-poly(ethylene glycol)-NH2 and folic acid. Results: A drug delivery system of folic acid-poly(ethylene glycol)-cGQDs was successfully constructed with ideal entrapment efficiency (97.5%) and drug-loading capacity (40.1%). Cell image indicated that the nanosystem entered into human cervical cancer cells mainly through macropinocytosis-dependent pathway. In vivo experiments showed the outstanding antitumor ability and low systemic toxicity of this nanodrug-delivery system. Conclusion: The newly developed drug-delivery system provides an important alternative for tumor therapy without causing systemic adverse effects.


2019 ◽  
Vol 20 (15) ◽  
pp. 3764 ◽  
Author(s):  
Mona Ebadi ◽  
Kalaivani Buskaran ◽  
Bullo Saifullah ◽  
Sharida Fakurazi ◽  
Mohd Zobir Hussein

One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg–Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.


Sign in / Sign up

Export Citation Format

Share Document