scholarly journals Construction of anti-codon table of the plant kingdom and evolution of tRNA selenocysteine (tRNASec)

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tapan Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdul Latif Khan ◽  
...  

Abstract Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not. Results Therefore, we analysed the tRNAnome of 128 plant species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas GCG anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons (isoacceptor) at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and we found that tRNASec showed anti-codon switch during the course of evolution. Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.

2020 ◽  
Author(s):  
Tapan Kumar Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Ahmed Al-Harrasi

Abstract Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not. Results Therefore, we analysed the tRNAnome of 128 species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas CGC anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and it has undergone anti-codon switch during the course of evolution. Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.


2020 ◽  
Author(s):  
Tapan Kumar Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdul Latif Khan ◽  
...  

Abstract Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not. Results Therefore, we analysed the tRNAnome of 128 species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas GCG anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and we found that tRNASec showed anti-codon switch during the course of evolution.Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.


2020 ◽  
Author(s):  
Tapan Kumar Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdul Latif Khan ◽  
...  

Abstract Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not. Results Therefore, we analysed the tRNAnome of 128 species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas GCG anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and we found that tRNASec showed anti-codon switch during the course of evolution.Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2585-2596 ◽  
Author(s):  
Joshua T. Herbeck ◽  
Dennis P. Wall ◽  
Jennifer J. Wernegreen

Wigglesworthia glossinidia brevipalpis, the obligate bacterial endosymbiont of the tsetse fly Glossina brevipalpis, is characterized by extreme genome reduction and AT nucleotide composition bias. Here, multivariate statistical analyses are used to test the hypothesis that mutational bias and genetic drift shape synonymous codon usage and amino acid usage of Wigglesworthia. The results show that synonymous codon usage patterns vary little across the genome and do not distinguish genes of putative high and low expression levels, thus indicating a lack of translational selection. Extreme AT composition bias across the genome also drives relative amino acid usage, but predicted high-expression genes (ribosomal proteins and chaperonins) use GC-rich amino acids more frequently than do low-expression genes. The levels and configuration of amino acid differences between Wigglesworthia and Escherichia coli were compared to test the hypothesis that the relatively GC-rich amino acid profiles of high-expression genes reflect greater amino acid conservation at these loci. This hypothesis is supported by reduced levels of protein divergence at predicted high-expression Wigglesworthia genes and similar configurations of amino acid changes across expression categories. Combined, the results suggest that codon and amino acid usage in the Wigglesworthia genome reflect a strong AT mutational bias and elevated levels of genetic drift, consistent with expected effects of an endosymbiotic lifestyle and repeated population bottlenecks. However, these impacts of mutation and drift are apparently attenuated by selection on amino acid composition at high-expression genes.


2018 ◽  
Vol 19 (12) ◽  
pp. 4010
Author(s):  
Zhaocai Li ◽  
Wen Hu ◽  
Xiaoan Cao ◽  
Ping Liu ◽  
Youjun Shang ◽  
...  

The family of Chlamydiaceae contains a group of obligate intracellular bacteria that can infect a wide range of hosts. The evolutionary trend of members in this family is a hot topic, which benefits our understanding of the cross-infection of these pathogens. In this study, 14 whole genomes of 12 Chlamydia species were used to investigate the nucleotide, codon, and amino acid usage bias by synonymous codon usage value and information entropy method. The results showed that all the studied Chlamydia spp. had A/T rich genes with over-represented A or T at the third positions and G or C under-represented at these positions, suggesting that nucleotide usages influenced synonymous codon usages. The overall codon usage trend from synonymous codon usage variations divides the Chlamydia spp. into four separate clusters, while amino acid usage divides the Chlamydia spp. into two clusters with some exceptions, which reflected the genetic diversity of the Chlamydiaceae family members. The overall codon usage pattern represented by the effective number of codons (ENC) was significantly positively correlated to gene GC3 content. A negative correlation exists between ENC and the codon adaptation index for some Chlamydia species. These results suggested that mutation pressure caused by nucleotide composition constraint played an important role in shaping synonymous codon usage patterns. Furthermore, codon usage of T3ss and Pmps gene families adapted to that of the corresponding genome. Taken together, analyses help our understanding of evolutionary interactions between nucleotide, synonymous codon, and amino acid usages in genes of Chlamydiaceae family members.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 927-935 ◽  
Author(s):  
H Akashi

Abstract I present evidence that natural selection biases synonymous codon usage to enhance the accuracy of protein synthesis in Drosophila melanogaster. Since the fitness cost of a translational misincorporation will depend on how the amino acid substitution affects protein function, selection for translational accuracy predicts an association between codon usage in DNA and functional constraint at the protein level. The frequency of preferred codons is significantly higher at codons conserved for amino acids than at nonconserved codons in 38 genes compared between D. melanogaster and Drosophila virilis or Drosophila pseudoobscura (Z = 5.93, P < 10(-6)). Preferred codon usage is also significantly higher in putative zinc-finger and homeodomain regions than in the rest of 28 D. melanogaster transcription factor encoding genes (Z = 8.38, P < 10(-6)). Mutational alternatives (within-gene differences in mutation rates, amino acid changes altering codon preference states, and doublet mutations at adjacent bases) do not appear to explain this association between synonymous codon usage and amino acid constraint.


2009 ◽  
Vol 37 (2) ◽  
pp. 677-684 ◽  
Author(s):  
Hanmei Liu ◽  
Rui He ◽  
Huaiyu Zhang ◽  
Yubi Huang ◽  
Mengliang Tian ◽  
...  

Author(s):  
Yicong Li ◽  
Rui Wang ◽  
Huihui Wang ◽  
Feiyang Pu ◽  
Xili Feng ◽  
...  

Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.


1993 ◽  
Vol 21 (23) ◽  
pp. 5294-5300 ◽  
Author(s):  
Sheila L. Fennoy ◽  
Julia Bailey-serres

Sign in / Sign up

Export Citation Format

Share Document