scholarly journals Analysis of the transcriptome of bovine endometrial cells isolated by laser micro-dissection (1): specific signatures of stromal, glandular and luminal epithelial cells

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.

Author(s):  
Alicia M. Barnett ◽  
Jane A. Mullaney ◽  
Charlotte Hendriks ◽  
Lisa Le Borgne ◽  
Warren C. McNabb ◽  
...  

The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell-types (stem-cells, enterocytes, goblet and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin, and colonoids with enteroids. Colonoids derived from three healthy pigs formed multi-lobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem-cell markers Sox9 and Lgr5 encoding Sex determining region Y-box 9 and leucine-rich repeat-containing G-protein coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1 respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga and Muc2 encoding atonal homolog 1, chromogranin A and mucin 2 respectively, were decreased in colonoids, while Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell-types with decreased barrier maturation relative to their tissues of origin.


2019 ◽  
Author(s):  
Arnav Moudgil ◽  
Michael N. Wilkinson ◽  
Xuhua Chen ◽  
June He ◽  
Alex J. Cammack ◽  
...  

AbstractIn situ measurements of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ.


2019 ◽  
Author(s):  
Chen-Hao Chen ◽  
Rongbin Zheng ◽  
Jingyu Fan ◽  
Myles Brown ◽  
Jun S. Liu ◽  
...  

AbstractTo characterize the genomic distances over which transcription factors (TFs) influence gene expression, we examined thousands of TF and histone modification ChIP-seq datasets and thousands of gene expression profiles. A model integrating these data revealed two classes of TF: one with short-range regulatory influence, the other with long-range regulatory influence. The two TF classes also had distinct chromatin-binding preferences and auto-regulatory properties. The regulatory range of a single TF bound within different topologically associating domains (TADs) depended on intrinsic TAD properties such as local gene density and G/C content, but also on the TAD chromatin state in specific cell types. Our results provide evidence that most TFs belong to one of these two functional classes, and that the regulatory range of long-range TFs is chromatin-state dependent. Thus, consideration of TF type, distance-to-target, and chromatin context is likely important in identifying TF regulatory targets and interpreting GWAS and eQTL SNPs.


2010 ◽  
Vol 17 (2) ◽  
pp. 361-371 ◽  
Author(s):  
Françoise Galland ◽  
Ludovic Lacroix ◽  
Patrick Saulnier ◽  
Philippe Dessen ◽  
Geri Meduri ◽  
...  

Non-functioning pituitary adenomas (NFPAs) may be locally invasive. Markers of invasiveness are needed to guide patient management and particularly the use of adjuvant radiotherapy. To examine whether invasive NFPAs display a specific gene expression profile relative to non-invasive tumors, we selected 40 NFPAs (38 of the gonadotroph type) and classified them as invasive (n=22) or non-invasive (n=18) on the basis of magnetic resonance imaging and surgical findings. We then performed pangenomic analysis with the 44k Agilent human whole genome expression oligonucleotide microarray in order to identify genes with differential expression between invasive and non-invasive NFPAs. Candidate genes were then tested in qRT-PCR. Prediction class analysis showed that the expression of 346 genes differed between invasive and non-invasive NFPAs (P<0.001), of which 233 genes were up-regulated and 113 genes were down-regulated in invasive tumors. On the basis of Ingenuity networks and the degree of up- or down-regulation in invasive versus non-invasive tumors, 35 genes were selected for expression quantification by qRT-PCR. Overexpression of only four genes was confirmed, namely IGFBP5 (P=0.02), MYO5A (P=0.04), FLT3 (P=0.01), and NFE2L1 (P=0.02). At the protein level, only myosin 5A (MYO5A) immunostaining was stronger in invasive than in non-invasive NFPAs. Molecular signature allows to differentiate ‘grossly’ invasive from non-invasive NFPAs. The product of one of these genes, MYO5A, may be a useful marker of tumor invasiveness.


2019 ◽  
Vol 40 (4) ◽  
pp. 747-759 ◽  
Author(s):  
Yan Wang ◽  
Ying Luo ◽  
Yang Yao ◽  
Yuhua Ji ◽  
Liangshu Feng ◽  
...  

Long noncoding RNAs (lncRNA) expression profiles change in the ischemic brain after stroke, but their roles in specific cell types after stroke have not been studied. We tested the hypothesis that lncRNA modulates brain injury by altering macrophage functions. Using RNA deep sequencing, we identified 73 lncRNAs that were differentially expressed in monocyte-derived macrophages (MoDMs) and microglia-derived macrophages (MiDMs) isolated in the ischemic brain three days after stroke. Among these, the lncRNA, GM15628, is highly expressed in pro-inflammatory MoDMs but not in MiDMs, and are functionally related to its neighbor gene, lymphocyte cytosolic protein 1 (LCP1), which plays a role in maintaining cell shape and cell migration. We termed this lncRNA as Macrophage contained LCP1 related pro-inflammatory lncRNA, Maclpil. Using cultured macrophages polarized by LPS, M(LPS), we found that downregulation of Maclpil in M(LPS) decreased pro-inflammatory gene expression while promoting anti-inflammatory gene expression. Maclpil inhibition also reduced the migration and phagocytosis ability of MoDMs by inhibiting LCP1. Furthermore, adoptive transfer of Maclpil silenced M(LPS), reduced ischemic brain infarction, improved behavioral performance and attenuated penetration of MoDMs in the ischemic hemisphere. We conclude that by blocking macrophage, Maclpil protects against acute ischemic stroke by inhibiting neuroinflammation.


2016 ◽  
Vol 22 (6) ◽  
pp. 579-592 ◽  
Author(s):  
Xiaomin Dong ◽  
Yanan You ◽  
Jia Qian Wu

The composition and function of the central nervous system (CNS) is extremely complex. In addition to hundreds of subtypes of neurons, other cell types, including glia (astrocytes, oligodendrocytes, and microglia) and vascular cells (endothelial cells and pericytes) also play important roles in CNS function. Such heterogeneity makes the study of gene transcription in CNS challenging. Transcriptomic studies, namely the analyses of the expression levels and structures of all genes, are essential for interpreting the functional elements and understanding the molecular constituents of the CNS. Microarray has been a predominant method for large-scale gene expression profiling in the past. However, RNA-sequencing (RNA-Seq) technology developed in recent years has many advantages over microarrays, and has enabled building more quantitative, accurate, and comprehensive transcriptomes of the CNS and other systems. The discovery of novel genes, diverse alternative splicing events, and noncoding RNAs has remarkably expanded the complexity of gene expression profiles and will help us to understand intricate neural circuits. Here, we discuss the procedures and advantages of RNA-Seq technology in mammalian CNS transcriptome construction, and review the approaches of sample collection as well as recent progress in building RNA-Seq-based transcriptomes from tissue samples and specific cell types.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kai Kang ◽  
Caizhi Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

Abstract Background Biological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and an added new function to aid cell type annotation. The R package would be of interest for the broader R community. Result We developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating the CDSeq estimated cell types using single-cell RNA sequencing (scRNA-seq) data. This function allows users to readily interpret and visualize the CDSeq estimated cell types. In addition, this new function further allows the users to annotate CDSeq-estimated cell types using marker genes. We carried out additional validations of the CDSeqR software using synthetic, real cell mixtures, and real bulk RNA-seq data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Conclusions The existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell–cell interactions in the tissue microenvironment. Bulk level analyses neglect tissue heterogeneity, however, and hinder investigation of a cell-type-specific expression. The CDSeqR package may aid in silico dissection of bulk expression data, enabling researchers to recover cell-type-specific information.


2019 ◽  
Author(s):  
D. Vidal-Pineiro ◽  
N. Parker ◽  
J. Shin ◽  
L. French ◽  
H. Grydeland ◽  
...  

AbstractCortical thinning occurs throughout the entire life and extends to late-life neurodegeneration, yet the neurobiological substrates are poorly understood. Here, we used a virtual-histology technique and gene expression data from the Allen Human Brain Atlas to compare the regional profiles of longitudinal cortical thinning through life (4004 MRIs) with those of gene expression for several neuronal and non-neuronal cell types. The results were replicated in three independent longitudinal datasets. We found that inter-regional profiles of cortical thinning related to expression profiles for marker genes of CA1 pyramidal cells, astrocytes and microglia during development and in aging. During the two stages of life, the relationships went in opposite directions: greater gene expression related to less thinning in development and vice versa in aging. The association between cortical thinning and cell-specific gene expression was also present in mild cognitive impairment and Alzheimer’s Disease. These findings suggest a role of astrocytes and microglia in promoting and supporting neuronal growth and dendritic structures through life that affects cortical thickness during development, aging, and neurodegeneration. Overall, the findings contribute to our understanding of the neurobiology underlying variations in MRI-derived estimates of cortical thinning through life and late-life disease.


Development ◽  
2021 ◽  
Author(s):  
Dimitris Katsanos ◽  
Mar Ferrando-Marco ◽  
Iqrah Razzaq ◽  
Gabriel Aughey ◽  
Tony Southall ◽  
...  

The epidermis of Caenorhabditis elegans is an essential tissue for survival as it contributes to the formation of the cuticle barrier, as well as facilitates developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells that exhibit stem cell-like behaviour during development. How the seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. We finally predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell-type-specific gene expression profiles likely associated with epidermal cell fate patterning.


1992 ◽  
Vol 12 (6) ◽  
pp. 2708-2719 ◽  
Author(s):  
S M Jackson ◽  
C A Keech ◽  
D J Williamson ◽  
A Gutierrez-Hartmann

The proximal rat prolactin (rPRL) promoter contains three cell-specific elements, designated footprints I, III, and IV, which restrict rPRL gene expression to anterior pituitary lactotroph cells. Footprint II (-130 to -120) binds a factor, which we have termed F2F, present in pituitary and nonpituitary cell types. Here we demonstrate that a key role of the footprint II site is to inhibit rPRL promoter activity in nonpituitary cells, specifically, by interfering with the basal activating function of a vicinal element. Gene transfer analysis revealed 20-fold activation of the rPRL promoter in nonpituitary cell types when footprint II was either deleted or specifically mutated. Similar activation of the intact rPRL promoter was obtained by in vivo F2F titration studies. In GH4 rat pituitary cells, the footprint II inhibitory activity was masked by the redundant, positively acting cell-specific elements and was inhibitory only if the two upstream sites, footprints III and IV, were deleted. Deletion of the -112 to -80 region in the footprint II site-specific mutant background resulted in complete loss of rPRL promoter activity in both pituitary and nonpituitary cell types, mapping a basal activating element that is operative irrespective of cell type to this region. While the basal activating element imparted an activating function in a heterologous promoter assay, the footprint II sequence did not display any inherent repressor function and actually induced several minimal heterologous promoters. However, the inhibitory activity of the footprint II site was detected only if it was in context with the basal activating element. These data underscore the importance of ubiquitous activating and inhibitory factors in establishing cell-specific gene expression and further emphasize the complexity of the molecular mechanisms which restrict gene expression to specific cell types. We provide a novel paradigm to study rPRL promoter function and hormone responsiveness independently of lactotroph cell-specific requirements.


Sign in / Sign up

Export Citation Format

Share Document