scholarly journals Identification of long noncoding natural antisense transcripts (lncNATs) correlated with drought stress response in wild rice (Oryza nivara)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yong-Chao Xu ◽  
Jie Zhang ◽  
Dong-Yan Zhang ◽  
Ying-Hui Nan ◽  
Song Ge ◽  
...  

Abstract Background Wild rice, including Oryza nivara and Oryza rufipogon, which are considered as the ancestors of Asian cultivated rice (Oryza sativa), possess high genetic diversity and serve as a crucial resource for breeding novel cultivars of cultivated rice. Although rice domestication related traits, such as seed shattering and plant architecture, have been intensively studied at the phenotypic and genomic levels, further investigation is needed to understand the molecular basis of phenotypic differences between cultivated and wild rice. Drought stress is one of the most severe abiotic stresses affecting rice growth and production. Adaptation to drought stress involves a cascade of genes and regulatory factors that form complex networks. O. nivara inhabits swampy areas with a seasonally dry climate, which is an ideal material to discover drought tolerance alleles. Long noncoding natural antisense transcripts (lncNATs), a class of long noncoding RNAs (lncRNAs), regulate the corresponding sense transcripts and play an important role in plant growth and development. However, the contribution of lncNATs to drought stress response in wild rice remains largely unknown. Results Here, we conducted strand-specific RNA sequencing (ssRNA-seq) analysis of Nipponbare (O. sativa) and two O. nivara accessions (BJ89 and BJ278) to determine the role of lncNATs in drought stress response in wild rice. A total of 1246 lncRNAs were identified, including 1091 coding–noncoding NAT pairs, of which 50 were expressed only in Nipponbare, and 77 were expressed only in BJ89 and/or BJ278. Of the 1091 coding–noncoding NAT pairs, 240 were differentially expressed between control and drought stress conditions. Among these 240 NAT pairs, 12 were detected only in Nipponbare, and 187 were detected uniquely in O. nivara. Furthermore, 10 of the 240 coding–noncoding NAT pairs were correlated with genes enriched in stress responsive GO terms; among these, nine pairs were uniquely found in O. nivara, and one pair was shared between O. nivara and Nipponbare. Conclusion We identified lncNATs associated with drought stress response in cultivated rice and O. nivara. These results will improve our understanding of the function of lncNATs in drought tolerance and accelerate rice breeding.

2021 ◽  
Author(s):  
Yong-Chao Xu ◽  
Jie Zhang ◽  
Dong-Yan Zhang ◽  
Ying-Hui Nan ◽  
Song Ge ◽  
...  

Abstract Background Wild rice, including Oryza nivara and Oryza rufipogon, which are considered as the ancestors of Asian cultivated rice (Oryza sativa L.), possess high genetic diversity and serve as a crucial resource for breeding novel cultivars of cultivated rice. Although many rice domestication related traits, such as seed shattering and plant architecture, have been intensively studied at the phenotypic and genomic levels, further investigation is needed to understand the molecular basis of phenotypic differences between cultivated and wild rice. Drought stress is one of the most severe abiotic stresses affecting rice growth and production. Adaptation to drought stress involves a cascade of genes and regulatory factors that form complex networks. Long noncoding natural antisense transcripts (lncNATs), a class of long noncoding RNAs (lncRNAs), regulate the corresponding sense transcripts and play an important role in plant growth and development. However, the contribution of lncNATs to drought stress response in wild rice remains largely unknown. Results Here, we conducted strand-specific RNA sequencing (ssRNA-seq) analysis of Nipponbare (O. sativa ssp. japonica) and two O. nivara accessions (BJ89 and BJ278) to determine the role of lncNATs in drought stress response in wild rice. A total of 1,246 lncRNAs were identified, including 1,091 coding–noncoding NAT pairs, of which 50 were expressed only in Nipponbare, and 77 were expressed only in BJ89 and/or BJ278. Of the 1,091 coding–noncoding NAT pairs, 240 were differentially expressed between control and drought stress conditions. Among these 240 NAT pairs, 12 were detected only in Nipponbare, and 187 were detected uniquely in O. nivara. Furthermore, 10 of the 240 coding–noncoding NAT pairs were correlated with genes previously demonstrated to be involved in stress response; among these, nine pairs were uniquely found in O. nivara, and one pair was shared between O. nivara and Nipponbare. Conclusion We identified lncNATs associated with drought stress response in cultivated rice and O. nivara. These results will improve our understanding of the function of lncNATs in drought tolerance and accelerate rice breeding.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


Gene ◽  
2004 ◽  
Vol 340 (1) ◽  
pp. 133-139 ◽  
Author(s):  
M. Shahid Masood ◽  
Tomotaro Nishikawa ◽  
Shu-ichi Fukuoka ◽  
Peter K. Njenga ◽  
Takahiko Tsudzuki ◽  
...  

2017 ◽  
Vol 16 (4) ◽  
pp. 289-295 ◽  
Author(s):  
Kumari Neelam ◽  
Gurpreet K. Sahi ◽  
Kishor Kumar ◽  
Kuldeep Singh

AbstractDrought is the major abiotic constraint to the rice production in the rain-fed areas across Asia and sub-Saharan Africa. Wild species of Oryza offer a wide spectrum of adaptive traits and can serve as potential donors of biotic and abiotic stress tolerance. At the Punjab Agricultural University, we are maintaining an active collection of 1630 accessions of wild species germplasm (AA, CC, BBCC and CCDD) of rice. These accessions were screened to assess genetic variation for drought tolerance under field conditions. Severe water stress was imposed at the late vegetative stage by withholding water initially for 25 d and then extended further to 35 d during kharif season in the years 2013–14 and 2015–16. The tolerance score for drought stress was based on the extent of leaf rolling and leaf drying. Based on the 2 years’ data, seven accessions from Oryza rufipogon, four from Oryza longistaminata and one each from Oryza officinalis and Oryza latifolia were found tolerant to drought stress. These selected accessions were further phenotype for root morphology. The average root length among the selected accessions ranges between 36 and 80 cm and the number of primary roots vary from 30 to 87 cm. The O. rufipogon accession IRGC 106433, O. longistaminata accession IRGC 92656A, O. officinalis accession IRGC 101152 and O. latifolia accession IRGC 80769 showed approximately 2–2.5 times longer root length and number than the indica rice elite cultivar PR121. The results indicated potentiality of selected wild species germplasm for conferring drought tolerance to the elite cultivars.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 404 ◽  
Author(s):  
Muthusamy Muthusamy ◽  
Joo Yeol Kim ◽  
Eun Kyung Yoon ◽  
Jin A. Kim ◽  
Soo In Lee

Expansins are structural proteins prevalent in cell walls, participate in cell growth and stress responses by interacting with internal and external signals perceived by the genetic networks of plants. Herein, we investigated the Brassica rapa expansin-like B1 (BrEXLB1) interaction with phytohormones (IAA, ABA, Ethephon, CK, GA3, SA, and JA), genes (Bra001852, Bra001958, and Bra003006), biotic (Turnip mosaic Virus (TuMV), Pectobacterium carotovorum, clubroot disease), and abiotic stress (salt, oxidative, osmotic, and drought) conditions by either cDNA microarray or qRT-PCR assays. In addition, we also unraveled the potential role of BrEXLB1 in root growth, drought stress response, and seed germination in transgenic Arabidopsis and B. rapa lines. The qRT-PCR results displayed that BrEXLB1 expression was differentially influenced by hormones, and biotic and abiotic stress conditions; upregulated by IAA, ABA, SA, ethylene, drought, salt, osmotic, and oxidative conditions; and downregulated by clubroot disease, P. carotovorum, and TuMV infections. Among the tissues, prominent expression was observed in roots indicating the possible role in root growth. The root phenotyping followed by confocal imaging of root tips in Arabidopsis lines showed that BrEXLB1 overexpression increases the size of the root elongation zone and induce primary root growth. Conversely, it reduced the seed germination rate. Further analyses with transgenic B. rapa lines overexpressing BrEXLB1 sense (OX) and antisense transcripts (OX-AS) confirmed that BrEXLB1 overexpression is positively associated with drought tolerance and photosynthesis during vegetative growth phases of B. rapa plants. Moreover, the altered expression of BrEXLB1 in transgenic lines differentially influenced the expression of predicted BrEXLB1 interacting genes like Bra001852 and Bra003006. Collectively, this study revealed that BrEXLB1 is associated with root development, drought tolerance, photosynthesis, and seed germination.


2004 ◽  
Vol 7 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Chisato Masumoto ◽  
Takashige Ishii ◽  
Sono Kataoka ◽  
Tomoko Hatanaka ◽  
Naotsugu Uchida

2015 ◽  
Vol 28 (4) ◽  
pp. 408-419 ◽  
Author(s):  
Zhilei Liu ◽  
Yuanjing Li ◽  
Lina Ma ◽  
Haichao Wei ◽  
Jianfeng Zhang ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades play important roles in the stress response in both plants and microorganisms. The mycorrhizal symbiosis established between arbuscular mycorrhizal fungi (AMF) and plants can enhance plant drought tolerance, which might be closely related to the fungal MAPK response and the molecular dialogue between fungal and soybean MAPK cascades. To verify the above hypothesis, germinal Glomus intraradices (syn. Rhizophagus irregularis) spores and potted experiments were conducted. The results showed that AMF GiMAPKs with high homology with MAPKs from Saccharomyces cerevisiae had different gene expression patterns under different conditions (nitrogen starvation, abscisic acid treatment, and drought). Drought stress upregulated the levels of fungi and soybean MAPK transcripts in mycorrhizal soybean roots, indicating the possibility of a molecular dialogue between the two symbiotic sides of symbiosis and suggesting that they might cooperate to regulate the mycorrhizal soybean drought-stress response. Meanwhile, the changes in hydrogen peroxide, soluble sugar, and proline levels in mycorrhizal soybean as well as in the accelerated exchange of carbon and nitrogen in the symbionts were contributable to drought adaptation of the host plants. Thus, it can be preliminarily inferred that the interactions of MAPK signals on both sides, symbiotic fungus and plant, might regulate the response of symbiosis and, thus, improve the resistance of mycorrhizal soybean to drought stress.


2017 ◽  
Vol 45 (9) ◽  
pp. 5126-5141 ◽  
Author(s):  
Jie Xu ◽  
Qi Wang ◽  
Micheal Freeling ◽  
Xuecai Zhang ◽  
Yunbi Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document