scholarly journals Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04.BOR1;1c in Brassica napus

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Haifei Chen ◽  
Quan Zhang ◽  
Mingliang He ◽  
Sheliang Wang ◽  
Lei Shi ◽  
...  
2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


Gene ◽  
2019 ◽  
Vol 702 ◽  
pp. 27-35 ◽  
Author(s):  
Muhammad Salman Haider ◽  
Nadeem Khan ◽  
Tariq Pervaiz ◽  
Liu Zhongjie ◽  
Maazullah Nasim ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4625
Author(s):  
Ismail Din ◽  
Ihteram Ullah ◽  
Wei Wang ◽  
Hao Zhang ◽  
Lei Shi

Low phosphorus (P) availability is one of the major constraints to plant growth, particularly in acidic soils. A possible mechanism for enhancing the use of sparsely soluble P forms is the secretion of malate in plants by the aluminum-activated malate transporter (ALMT) gene family. Despite its significance in plant biology, the identification of the ALMT gene family in oilseed rape (Brassica napus; B. napus), an allotetraploid crop, is unveiled. Herein, we performed genome-wide identification and characterization of ALMTs in B. napus, determined their gene expression in different tissues and monitored transcriptional regulation of BnaALMTs in the roots and leaves at both a sufficient and a deficient P supply. Thirty-nine BnaALMT genes were identified and were clustered into five branches in the phylogenetic tree based on protein sequences. Collinearity analysis revealed that most of the BnaALMT genes shared syntenic relationships among BnaALMT members in B. napus, which suggested that whole-genome duplication (polyploidy) played a major driving force for BnaALMTs evolution in addition to segmental duplication. RNA-seq analyses showed that most BnaALMT genes were preferentially expressed in root and leaf tissues. Among them, the expression of BnaC08g13520D, BnaC08g15170D, BnaC08g15180D, BnaC08g13490D, BnaC08g13500D, BnaA08g26960D, BnaC05g14120D, BnaA06g12560D, BnaC05g20630D, BnaA07g02630D, BnaA04g15700D were significantly up-regulated in B. napus roots and leaf at a P deficient supply. The current study analyzes the evolution and the expression of the ALMT family in B. napus, which will help in further research on their role in the enhancement of soil P availability by secretion of organic acids.


Sign in / Sign up

Export Citation Format

Share Document