scholarly journals Characterization of non-specific lipid transfer protein (nsLtp) gene families in the Brassica napus pangenome reveals abundance variation

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Liang ◽  
Yang Huang ◽  
Kang Chen ◽  
Xiangdong Kong ◽  
Maoteng Li

Abstract Background Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. Results In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). Conclusion The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.

Planta ◽  
1996 ◽  
Vol 199 (2) ◽  
Author(s):  
IoannaA. Soufleri ◽  
Chantal Vergnolle ◽  
Emile Miginiac ◽  
Jean-Claude Kader

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 256
Author(s):  
Andrea O’Malley ◽  
Swanandi Pote ◽  
Ivana Giangrieco ◽  
Lisa Tuppo ◽  
Anna Gawlicka-Chruszcz ◽  
...  

(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins’ sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.


2021 ◽  
Vol 147 (2) ◽  
pp. AB171
Author(s):  
Henry Morelli ◽  
Cathy Thorpe ◽  
Ine Decuyper ◽  
Cali Loblundo ◽  
Khaldon Abbas ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Feng Li ◽  
Kai Fan ◽  
Fanglu Ma ◽  
Erkui Yue ◽  
Noreen Bibi ◽  
...  

Structure ◽  
1995 ◽  
Vol 3 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Dong Hae Shin ◽  
Jae Young Lee ◽  
Kwang Yeon Hwang ◽  
Kyeong Kyu Kim ◽  
Se Won Suh

2021 ◽  
Author(s):  
Melanie Gasser ◽  
Nicole Alloisio ◽  
Pascale Fournier ◽  
Severine Balmand ◽  
Ons Kharrat ◽  
...  

The response of Alnus glutinosa to Frankia alni is complex with several sequential physiological modifications that include calcium spiking, root hair deformation, penetration, induction of primordium, formation and growth of nodule. A transcriptomic study of seedlings in hydroponics after early contact (2.5 days) with Frankia alni, either with a culture supernatant or with living cells separated from the roots by a dialysis membrane, permitted to identify plant genes which expression level was modified upon early contact with Frankia. Forty-two genes were significantly up-regulated in both experiments, most of them encoding biological processes such as oxidative stress or response to stimuli. Among them, the most upregulated gene was a non-specific lipid transfer protein encoding gene with a fold change of 141. This nsLTP was found to increase Frankia nitrogen fixation at sub-lethal concentration. Interestingly, it was immunolocalized to a region of the deformed root hair at an early infection stage and later in nodules, it was localized around bacterial vesicles suggesting a role in early and late stages of symbiosis.


2009 ◽  
Vol 39 (9) ◽  
pp. 1427-1437 ◽  
Author(s):  
I. Lauer ◽  
N. Dueringer ◽  
S. Pokoj ◽  
S. Rehm ◽  
G. Zoccatelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document