scholarly journals Performance of SARS-CoV-2 antigen testing in symptomatic and asymptomatic adults: a single-center evaluation

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stephanie L. Mitchell ◽  
Steven Orris ◽  
Tanner Freeman ◽  
Megan C. Freeman ◽  
Michelle Adam ◽  
...  

Abstract Background Antigen testing offers rapid and inexpensive testing for SARS-CoV-2 but concerns regarding performance, especially sensitivity, remain. Limited data exists for use of antigen testing in asymptomatic patients; thus, performance and reliability of antigen testing remains unclear. Methods 148 symptomatic and 144 asymptomatic adults were included. A nasal swab was collected for testing by Quidel Sofia SARS IFA (Sofia) as point of care. A nasopharyngeal swab was also collected and transported to the laboratory for testing by Cepheid Xpert Xpress SARS-CoV-2/Flu/RSV RT-PCR (Cepheid). Results Overall, Sofia had good agreement with Cepheid (> 95%) in adults, however was less sensitive. Sofia had a sensitivity of 87.8% and 33.3% for symptomatic and asymptomatic patients, respectively. Among symptomatic patients, testing > 5 days post symptom onset resulted in lower sensitivity (82%) when compared with testing within 5 days of symptom onset (90%). Of the four Sofia false-negative results in the asymptomatic cohort, 50% went on to develop COVID-19 disease within 5 days of testing. Specificity in both symptomatic and asymptomatic cohorts was 100%. Conclusions Sofia has acceptable performance in symptomatic adults when tested < 5 days of symptom onset. Caution should be taken when testing patients with ≥ 5 days of symptoms. The combination of low prevalence and reduced sensitivity results in relatively poor performance of in asymptomatic patients. NAAT-based diagnostic assays should be considered in when antigen testing is unreliable, particularly in symptomatic patients with > 5 days of symptom onset and asymptomatic patients.

2021 ◽  
Author(s):  
Jerome Le Goff ◽  
Solen Kerneis ◽  
Caroline Elie ◽  
Severine Mercier Delarue ◽  
Nabil Gastli ◽  
...  

Background: The rapid identification of SARS-CoV-2 infected individuals is a cornerstone in strategies for the control of virus spread. The sensitivity of SARS-CoV-2 RNA detection by RT-PCR is similar in saliva and nasopharyngeal swab. Rapid molecular point-of-care tests in saliva could facilitate, broaden and speed up the diagnosis. Objectives and methods: We conducted a prospective study in two community COVID-19 screening centers to evaluate the performances of a CE-marked RT-LAMP assay (EasyCoV) specifically designed for the detection of SARS-CoV-2 RNA from fresh saliva samples, compared to nasopharyngeal RT-PCR as reference test, saliva RT-PCR and nasopharyngeal antigen testing. Results: Overall, 117 of the 1718 participants (7%) were tested positive with nasopharyngeal RT-PCR. Sensitivities of saliva RT-PCR and nasopharyngeal antigen test were 93% (95% Confidence Interval (95%CI): 86-97) and 85% (95%CI: 77-91), respectively. The sensitivity and specificity of the RT-LAMP assay in saliva were 34% (95%CI: 26-44) and 97% (95%CI: 96-98). The performance was similar in symptomatic and asymptomatic participants and whatever the reference standard considered. Ct values of nasopharyngeal RT-PCR were significantly lower in the 40 true positive subjects with saliva RT-LAMP (Ct 25.9) than in the 48 false negative subjects with saliva RT-LAMP (Ct 28.4) (p=0.028). Conclusion: In the ambulatory setting, the detection of SARS-CoV-2 from crude saliva samples with the RT-LAMP assay had a lower sensitivity than nasopharyngeal RT-PCR, saliva RT-PCR and nasopharyngeal antigen testing.


2021 ◽  
Author(s):  
Jérôme LeGoff ◽  
Solen Kernéis ◽  
Caroline Elie ◽  
Séverine Mercier Delarue ◽  
Nabil Gastli ◽  
...  

Abstract Background Rapid identification of SARS-Cov-2 infected individuals is a cornerstone for the control of virus spread. The sensitivity of SARS-CoV-2 RNA detection by RT-PCR is similar in saliva and nasopharyngeal swab. Rapid molecular point-of-care tests in saliva could facilitate, broaden and speed up the diagnosis. Methods We conducted a prospective study in two community COVID-19 screening centers to evaluate the performances of a CE-marked RT-LAMP assay (EasyCoV™) designed for the detection of SARS-CoV2 RNA from fresh saliva samples, compared to nasopharyngeal RT-PCR, to saliva RT-PCR and to nasopharyngeal antigen testing. Results Overall, 117 of the 1718 participants (7%) were tested positive with nasopharyngeal RT-PCR. Compared to nasopharyngeal RT-PCR, the sensitivity and specificity of the RT-LAMP assay in saliva were 34% and 97% respectively. The Ct values of nasopharyngeal RT-PCR were significantly lower in the 40 true positive subjects with saliva RT-LAMP (Ct 25.9) than in the 48 false negative subjects with saliva RT-LAMP (Ct 28.4) (p = 0.028). Considering six alternate criteria for reference test, including saliva RT-PCR and nasopharyngeal antigen, the sensitivity of saliva RT-LAMP ranged between 27 and 44%. Conclusion The detection of SARS-CoV-2 from crude saliva samples with a RT-LAMP assay had a lower sensitivity than nasopharyngeal RT-PCR, saliva RT-PCR and nasopharyngeal antigen testing. Registration number : NCT04578509


2020 ◽  
Vol 13 (1) ◽  
pp. 413-414 ◽  
Author(s):  
Mohamed Farouk Allam

Due to the international spread of COVID-19, the difficulty of collecting nasopharyngeal swab specimen from all suspected patients, the costs of RT-PCR and CT, and the false negative results of RT-PCR assay in 41% of COVID-19 patients, a scoring system is needed to classify the suspected patients in order to determine the need for follow-up, home isolation, quarantine or the conduction of further investigations. A scoring system is proposed as a diagnostic tool for suspected patients. It includes Epidemiological Evidence of Exposure, Clinical Symptoms and Signs, and Investigations (if available). This scoring system is simple, could be calculated in a few minutes, and incorporates the main possible data/findings of any patient.


1999 ◽  
Vol 82 (4) ◽  
pp. 923-928 ◽  
Author(s):  
Markus Lipp ◽  
Peter Brodmann ◽  
Klaus Pietsch ◽  
Jean Pauwels ◽  
Elke Anklam ◽  
...  

Abstract This paper presents results of a collaborative trial study (IUPAC project No. 650/93/97) involving 29 laboratories in 13 countries applying a method for detecting genetically modified organisms (GMOs) in food. The method is based on using the polymerase chain reaction to determine the 35S promoter and the NOS terminator for detection of GMOs. Reference materials were produced that were derived from genetically modified soy beans and maize. Correct identification of samples containing 2% GMOs is achievable for both soy beans and maize. For samples containing 0.5% genetically modified soy beans, analysis of the 35S promoter resulted also in a 100% correct classification. However, 3 false-negative results (out of 105 samples analyzed) were reported for analysis of the NOS terminator, which is due to the lower sensitivity of this method. Because of the bigger genomic DNA of maize, the probability of encountering false-negative results for samples containing 0.5% GMOs is greater for maize than for soy beans. For blank samples (0% GMO), only 2 false-positive results for soy beans and one for maize were reported. These results appeared as very weak signals and were most probably due to contamination of laboratory equipment.


2009 ◽  
Vol 55 (7) ◽  
pp. 1389-1394 ◽  
Author(s):  
Ann M Gronowski ◽  
Mark Cervinski ◽  
Ulf-Håkan Stenman ◽  
Alison Woodworth ◽  
Lori Ashby ◽  
...  

Abstract Background: During pregnancy, human chorionic gonadotropin (hCG) immunoreactivity in urine consists of intact hCG as well as a number of hCG variants including the core fragment of hCGβ (hCGβcf). We identified 3 urine specimens with apparent false-negative results using the OSOM® hCG Combo Test (Genzyme Diagnostics) qualitative hCG device and sought to determine whether an excess of 1 of the fragments or variants might be the cause of the interference. Methods: We measured concentrations of hCG variants in the urine from 3 patients with apparent false-negative hCG results. Purified hCG variants were added to urines positive for hCG and tested using the OSOM, ICON® 25 hCG (Beckman Coulter), and hCG Combo SP® Brand (Cardinal Health) devices. Results: Dilution of these 3 urine samples resulted in positive results on the OSOM device. Quantification of hCG variants in each of the 3 patient urine specimens demonstrated that hCGβcf occurred in molar excess of intact hCG. Addition of purified hCGβcf to hCG-positive urines caused false-negative hCG results using the OSOM and ICON qualitative urine hCG devices. Conclusions: Increased concentrations of hCGβcf can cause false-negative results on the OSOM and ICON qualitative urine hCG devices. .


2021 ◽  
Vol 9 ◽  
Author(s):  
Douglas Carvalho Caixeta ◽  
Stephanie Wutke Oliveira ◽  
Leia Cardoso-Sousa ◽  
Thulio Marquez Cunha ◽  
Luiz Ricardo Goulart ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) is a global health problem, which is challenging healthcare worldwide. In this critical review, we discussed the advantages and limitations in the implementation of salivary diagnostic platforms of COVID-19. The diagnostic test of COVID-19 by invasive nasopharyngeal collection is uncomfortable for patients and requires specialized training of healthcare professionals in order to obtain an appropriate collection of samples. Additionally, these professionals are in close contact with infected patients or suspected cases of COVID-19, leading to an increased contamination risk for frontline healthcare workers. Although there is a colossal demand for novel diagnostic platforms with non-invasive and self-collection samples of COVID-19, the implementation of the salivary platforms has not been implemented for extensive scale testing. Up to date, several cross-section and clinical trial studies published in the last 12 months support the potential of detecting SARS-CoV-2 RNA in saliva as a biomarker for COVID-19, providing a self-collection, non-invasive, safe, and comfortable procedure. Therefore, the salivary diagnosis is suitable to protect healthcare professionals and other frontline workers and may encourage patients to get tested due to its advantages over the current invasive methods. The detection of SARS-CoV-2 in saliva was substantial also in patients with a negative nasopharyngeal swab, indicating the presence of false negative results. Furthermore, we expect that salivary diagnostic devices for COVID-19 will continue to be used with austerity without excluding traditional gold standard specimens to detect SARS-CoV-2.


Author(s):  
Marco Marando ◽  
Adriana Tamburello ◽  
Pietro Gianella

On 11 March 2020, the WHO declared COVID-19 a pandemic and global health emergency. We describe the clinical features and role of ultra-low-dose chest computed tomography (CT) and bronchoscopy in the diagnosis of coronavirus disease (COVID-19). In our patient, who was highly suggestive clinically and radiologically for COVID-19, we had two false-negative results for nasopharyngeal and oral swab reverse-transcriptase polymerase chain reaction (RT-PCR) assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Eventually, we confirmed the diagnosis using bronchoscopy and bronchoalveolar lavage (BAL).


2021 ◽  
Author(s):  
Enos C Kline ◽  
Nuttada Panpradist ◽  
Ian T Hull ◽  
Qin Wang ◽  
Amy K Oreskovic ◽  
...  

AbstractThe increasing prevalence of variant lineages during the COVID-19 pandemic has the potential to disrupt molecular diagnostics due to mismatches between primers and variant templates. Point-of-care molecular diagnostics, which often lack the complete functionality of their high throughput laboratory counterparts, are particularly susceptible to this type of disruption, which can result in false negative results. To address this challenge, we have developed a robust Loop Mediated Isothermal Amplification assay with single tube multiplexed multi-target redundancy and an internal amplification control. A convenient and cost-effective target specific fluorescence detection system allows amplifications to be grouped by signal using adaptable probes for pooled reporting of SARS-COV-2 target amplifications or differentiation of the Internal Amplification Control. Over the course of the pandemic, primer coverage of viral lineages by the three redundant sub-assays has varied from assay to assay as they have diverged from the Wuhan-Hu-1 isolate sequence, but aggregate coverage has remained high for all variant sequences analyzed, with a minimum of 97.4% (Variant of Interest: Eta). In three instances (Delta, Gamma, Eta), a high frequency mismatch with one of the three sub-assays was observed, but overall coverage remained high due to multi-target redundancy. When challenged with extracted human samples the multiplexed assay showed 100% sensitivity for samples containing greater than 30 copies of viral RNA per reaction, and 100% specificity. These results are further evidence that conventional laboratory methodologies can be leveraged at the point-of-care for robust performance and diagnostic stability over time.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Hege Vangstein Aamot ◽  
Bjørn Odd Johnsen ◽  
Inge Skråmm

Abstract Objectives This pilot study aimed to compare the commercial Unyvero ITI multiplex PCR application (U-ITI, Curetis GmbH) with conventional culturing concerning (a) detection of pathogens, (b) time to detection of pathogens and (c) time to and quality of antibiotic treatment recommendation in diagnostics of orthopedic implant-associated infections (OIAI). Results 72 tissue biopsies from 15 consecutive patients with deep OIAI infections were analyzed with conventional culturing including phenotypic antibiotic susceptibility testing and the U-ITI. U-ITI showed lower sensitivity than conventional culturing concerning detection of pathogens (73% vs 93%). 4/15 patients would have been given false negative results by U-ITI, all of which were culture-positive for Staphylococcus species. Median time to detection of pathogens was 47 h and antibiotic resistance 89 h by conventional methods compared to 13.5 h with the U-ITI. The U-ITI did not detect antibiotic resistance, whereas conventional culturing showed resistance to antibiotics covered by the U-ITI panel in 2 patients. Time to detection of pathogens was improved, but the detection limit for staphylococci was unsatisfactory. Although the time to antibiotic treatment recommendation was significantly reduced, the U-ITI would have resulted in incorrect antibiotic recommendation in 2 patients. Our data do not support use of this assay in diagnostics.


2020 ◽  
Vol 66 (8) ◽  
pp. 1055-1062 ◽  
Author(s):  
Mei San Tang ◽  
Karl G Hock ◽  
Nicole M Logsdon ◽  
Jennifer E Hayes ◽  
Ann M Gronowski ◽  
...  

Abstract Background The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a rapid proliferation of serologic assays. However, little is known about their clinical performance. Here, we compared two commercial SARS-CoV-2 IgG assays. Methods 103 specimens from 48 patients with PCR-confirmed SARS-CoV-2 infections and 153 control specimens were analyzed using SARS-CoV-2 serologic assays by Abbott and EUROIMMUN (EI). Duration from symptom onset was determined by medical record review. Diagnostic sensitivity, specificity, and concordance were calculated. Results The Abbott SARS-CoV-2 assay had a diagnostic specificity of 99.4% (95% CI; 96.41–99.98%), and sensitivity of 0.0% (95% CI; 0.00–26.47%) at &lt;3 days post symptom onset, 30.0% (95% CI; 11.89–54.28) at 3–7d, 47.8% (95% CI; 26.82–69.41) at 8–13d and 93.8% (95% CI; 82.80–98.69) at ≥14d. Diagnostic specificity on the EI assay was 94.8% (95% CI; 89.96–97.72) if borderline results were considered positive and 96.7% (95% CI; 92.54–98.93) if borderline results were considered negative. The diagnostic sensitivity was 0.0% (95% CI; 0.00–26.47%) at &lt;3d, 25.0% (95% CI; 8.66–49.10) at 3–7d, 56.5% (95% CI; 34.49–76.81) at 3–7d and 85.4% (95% CI; 72.24–93.93) at ≥14d if borderline results were considered positive. The qualitative concordance between the assays was 0.83 (95% CI; 0.75–0.91). Conclusion The Abbott SARS-CoV-2 assay had fewer false positive and false negative results than the EI assay. However, diagnostic sensitivity was poor in both assays during the first 14 days of symptoms.


Sign in / Sign up

Export Citation Format

Share Document