scholarly journals Health and resource burden of a cancer diagnosis on the caregiver: an analysis of administrative claims data

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lisa M Hess ◽  
Siew Hoong Wong-Jacobson ◽  
Patrick M Peterson

Abstract Purpose Cancer diagnosis is known to affect the family; however, administrative claims data are not commonly used to evaluate the broader impact of cancer diagnosis. This study was designed to evaluate the feasibility of using claims data to explore the impact of cancer diagnosis on the caregiver. Methods IBM Marketscan data were used to identify eligible cancer patients, who were required to have a second adult over the age of 18 (defined as “caregiver” for this study) covered by the same the healthcare policy. Eligible control pairs included any two adults in the same policy with no evidence of cancer; for each pair one adult was randomly assigned to be the “patient control” while their partner was assigned as “caregiver control”. Probabilistic stratified sampling was used select control pairs for analysis by matching the relative frequencies within sex and age group strata to those of patient/caregiver pairs. Eligible control pairs were probabilistically sampled without replacement until the stratum with at least 0.5 % relative frequency had been completely sampled. Caregiver and caregiver control healthcare resource utilization (HCRU), new diagnoses, and healthcare costs were compared during the 12-month post-diagnosis period. Subgroup analyses were conducted by cancer subtypes (breast, colorectal, lung, gastric, sarcoma) and by sex of the patient and caregiver. Results A total of 62,893 patient/caregiver pairs and 449,177 control pairs were included. Overall, caregivers used slightly fewer healthcare resources and expended less costs during the 12-month period after the cancer diagnosis than controls (physician visits; 85.8 % vs. 95.7 %; hospitalizations 5.4 % vs. 7.0 %; emergency room visits 15.7 % versus 16.2 %, all p ≤ 0.001). This finding was consistent in all subgroup analyses. New diagnoses were lower in the caregiver cohort, except for mental disorders, which were higher than controls (14.3 % vs. 9.9 %, p < 0.0001). Psychotherapeutic/antidepressant utilization occurred among 21.0 % of caregivers versus 17.2 % of caregiver controls during this period. Conclusions It is feasible to use administrative claims data to evaluate the impact of a cancer diagnosis on the caregiver to evaluate outcomes such as HCRU, diagnoses and costs. These findings raise hypotheses about deferment of health care and increased mental distress during the caregiving period.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qinli Ma ◽  
Michael Mack ◽  
Sonali Shambhu ◽  
Kathleen McTigue ◽  
Kevin Haynes

Abstract Background The supplementation of electronic health records data with administrative claims data may be used to capture outcome events more comprehensively in longitudinal observational studies. This study investigated the utility of administrative claims data to identify outcomes across health systems using a comparative effectiveness study of different types of bariatric surgery as a model. Methods This observational cohort study identified patients who had bariatric surgery between 2007 and 2015 within the HealthCore Anthem Research Network (HCARN) database in the National Patient-Centered Clinical Research Network (PCORnet) common data model. Patients whose procedures were performed in a member facility affiliated with PCORnet Clinical Research Networks (CRNs) were selected. The outcomes included a 30-day composite adverse event (including venous thromboembolism, percutaneous/operative intervention, failure to discharge and death), and all-cause hospitalization, abdominal operation or intervention, and in-hospital death up to 5 years after the procedure. Outcomes were classified as occurring within or outside PCORnet CRN health systems using facility identifiers. Results We identified 4899 patients who had bariatric surgery in one of the PCORnet CRN health systems. For 30-day composite adverse event, the inclusion of HCARN multi-site claims data marginally increased the incidence rate based only on HCARN single-site claims data for PCORnet CRNs from 3.9 to 4.2%. During the 5-year follow-up period, 56.8% of all-cause hospitalizations, 31.2% abdominal operations or interventions, and 32.3% of in-hospital deaths occurred outside PCORnet CRNs. Incidence rates (events per 100 patient-years) were significantly lower when based on claims from a single PCORnet CRN only compared to using claims from all health systems in the HCARN: all-cause hospitalization, 11.0 (95% Confidence Internal [CI]: 10.4, 11.6) to 25.3 (95% CI: 24.4, 26.3); abdominal operations or interventions, 4.2 (95% CI: 3.9, 4.6) to 6.1 (95% CI: 5.7, 6.6); in-hospital death, 0.2 (95% CI: 0.11, 0.27) to 0.3 (95% CI: 0.19, 0.38). Conclusions Short-term inclusion of multi-site claims data only marginally increased the incidence rate computed from single-site claims data alone. Longer-term follow up captured a notable number of events outside of PCORnet CRNs. The findings suggest that supplementing claims data improves the outcome ascertainment in longitudinal observational comparative effectiveness studies.


2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Sanket S. Dhruva ◽  
Craig S. Parzynski ◽  
Ginger M. Gamble ◽  
Jeptha P. Curtis ◽  
Nihar R. Desai ◽  
...  

2011 ◽  
Vol 28 (4) ◽  
pp. 424-427 ◽  
Author(s):  
S. Amed ◽  
S. E. Vanderloo ◽  
D. Metzger ◽  
J.-P. Collet ◽  
K. Reimer ◽  
...  

Author(s):  
Michael D McCulloch ◽  
Tim Sobol ◽  
Joy Yuhas ◽  
Bill Ahern ◽  
Eric D Hixson ◽  
...  

Background: Administrative claims data are commonly used for measurement of mortality and readmissions in Acute Myocardial Infarction (AMI). With advent of the Electronic Medical Record (EMR), the electronic problem list offers new ways to capture diagnosis data. However, no data comparing the accuracy of administrative claims data and the EMR problem list exists. Methods: Two years of admissions at a single, quaternary medical center were analyzed to compare the presence of AMI diagnosis in administrative claims and EMR problem list data using a 2x2 matrix. To gain insights into this novel method, 25 patient admissions were randomly selected from each group to undergo physician chart review to adjudicate a clinical diagnosis of myocardial infarction based on the universal definition. Results: A total of 105,929 admissions from January 1, 2010 to December 31, 2011 were included. Where EMR problem list and administrative claims data were in agreement for or against AMI diagnosis they were highly accurate. Where administrative claims data, but not EMR problem list, reported AMI the most common explanation was true AMI with missing EMR problem list diagnoses (60%). Less common reasons for discordance in this category include: (1) administrative coding error (20%), (2) computer algorithm error (8%), (3) patient death before EMR problem list created (4%), (4) EMR problem list not used (4%) and (5) AMI diagnosis was removed from EMR problem list (4%). Where EMR problem list, but not administrative claims data, reported AMI the most common explanation was no AMI with historical diagnosis of AMI from a previous admission (60%). Less common reasons for discordance in this category include: (1) AMI present but not the principal diagnosis (32%), (2) administrative coding error (4%) and (3) erroneous EMR problem list entry (4%). Conclusion: Compared to administrative and chart review diagnoses, we found that using the EMR problem list to identify patient admissions with a principal diagnosis of AMI will overlook a subset of patients primarily due to inadequate clinical documentation. Additionally, the EMR problem list does not discriminate the admission principal diagnosis from the secondary diagnoses.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0194371 ◽  
Author(s):  
Daniel Schwarzkopf ◽  
Carolin Fleischmann-Struzek ◽  
Hendrik Rüddel ◽  
Konrad Reinhart ◽  
Daniel O. Thomas-Rüddel

Sign in / Sign up

Export Citation Format

Share Document