scholarly journals A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer

BMC Biology ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Jon Peñarando ◽  
Laura M. López-Sánchez ◽  
Rafael Mena ◽  
Silvia Guil-Luna ◽  
Francisco Conde ◽  
...  
2010 ◽  
Vol 112 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Tzu-Hurng Cheng ◽  
Yuk-Man Leung ◽  
Chi-Wai Cheung ◽  
Cheng-Hsien Chen ◽  
Yen-Ling Chen ◽  
...  

Background Propofol may have beneficial effects on the prevention of angiotensin II (Ang II)-induced cardiac fibroblast proliferation via its antioxidative properties. The authors hypothesized that propofol may alter Ang II-induced cell proliferation and aimed to identify the putative underlying signaling pathways in rat cardiac fibroblasts. Methods Cultured rat cardiac fibroblasts were pretreated with propofol then stimulated with Ang II; cell proliferation and endothelin-1 gene expression were examined. The effect of propofol on Ang II-induced nicotinamide adenine dinucleotide phosphate-oxidase activity, reactive oxygen species formation, extracellular signal-regulated kinase phosphorylation, and activator protein 1-mediated reporter activity were also examined. The effect of propofol on nitric oxide production and protein kinase B and endothelial nitric oxide synthase phosphorylations were also tested to elucidate the intracellular mechanism of propofol in proliferation. Results Ang II (100 nm) increased cell proliferation and endothelin-1 expression, which were partially inhibited by propofol (10 or 30 microm). Propofol also inhibited Ang II-increased nicotinamide adenine dinucleotide phosphate-oxidase activity, reactive oxygen species formation, extracellular signal-regulated kinase phosphorylation, and activator protein 1-mediated reporter activity. Propofol was also found to increase nitric oxide generation and protein kinase B and nitric oxide synthase phosphorylations. Nitric oxide synthase inhibitor (N-nitro-L-arginine methylester) and the short interfering RNA transfection for protein kinase B or endothelial nitric oxide synthase markedly attenuated the inhibitory effect of propofol on Ang II-induced cell proliferation. Conclusions The authors' results suggest that propofol prevents cardiac fibroblast proliferation by interfering with the generation of reactive oxygen species and involves the activation of the protein kinase B-endothelial nitric oxide synthase-nitric oxide pathway.


2019 ◽  
Vol 317 (4) ◽  
pp. G441-G446 ◽  
Author(s):  
Jan Te Winkel ◽  
Quincy E. John ◽  
Brian D. Hosfield ◽  
Natalie A. Drucker ◽  
Amitava Das ◽  
...  

Mesenteric ischemia is a devastating process that can result in intestinal necrosis. Mesenchymal stem cells (MSCs) are becoming a promising treatment modality. We hypothesized that 1) MSCs would promote vasodilation of mesenteric arterioles, 2) hydrogen sulfide (H2S) would be a critical paracrine factor of stem cell-mediated vasodilation, 3) mesenteric vasodilation would be impaired in the absence of endothelial nitric oxide synthase (eNOS) within the host tissue, and 4) MSCs would improve the resistin-to-adiponectin ratio in mesenteric vessels. H2S was measured with a specific fluorophore (7-azido-3-methylcoumarin) in intact MSCs and in cells with the H2S-producing enzyme cystathionine β synthase (CBS) knocked down with siRNA. Mechanical responses of isolated second- and third-order mesenteric arteries (MAs) from wild-type and eNOS knockout (eNOSKO) mice were monitored with pressure myography, after which the vessels were snap frozen and later analyzed for resistin and adiponectin via multiplex beaded assay. Addition of MSCs to the myograph bath significantly increased vasodilation of norepinephrine-precontracted MAs. Knockdown of CBS in MSCs decreased H2S production by MSCs and also decreased MSC-initiated MA dilation. MSC-initiated vasodilation was further reduced in eNOSKO vessels. The MA resistin-to-adiponectin ratio was higher in eNOSKO vessels compared with wild-type. These results show that MSC treatment promotes dilation of MAs by an H2S-dependent mechanism. Furthermore, functional eNOS within the host mesenteric bed appears to be essential for maximum stem cell therapeutic benefit, which may be attributable, in part, to modifications in the resistin-to-adiponectin ratio. NEW & NOTEWORTHY Stem cells have been shown to improve survival, mesenteric perfusion, and histological injury scores following intestinal ischemia. These benefits may be due to the paracrine release of hydrogen sulfide. In an ex vivo pressure myography model, we observed that mesenteric arterial dilation improved with stem cell treatment. Hydrogen sulfide release from stem cells and endothelial nitric oxide synthase within the vessels were critical components of optimizing stem cell-mediated mesenteric artery dilation.


2021 ◽  
Vol 10 (4) ◽  
pp. 631
Author(s):  
Sylvia Lee-Huang ◽  
Philip Lin Huang ◽  
Paul Lee Huang

We carried out live-cell real-time fluorescence imaging to follow the effects of genetic (siRNA) knockdown (KD) of endothelial nitric oxide synthase (eNOS) on mitochondrial biogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). We report here that eNOS KD in hMSCs blocks mitochondrial biogenesis and adipogenesis. The transfer of mitochondria from normal hMSCs to eNOS-deficient hMSCs restores adipogenesis. Furthermore, cell-free mitochondria purified from normal hMSCs also restores adipogenesis in eNOS-deficient cells. Thus, eNOS and NO signaling are essential for mitochondrial biogenesis, and mitochondrial activity is indispensable for adipogenesis in hMSC differentiation. We mapped the path and identified the mechanisms of mitochondrial transfer. We captured real-time images of differentiated mature adipocytes in mitosis and replication. These results reveal that human stem cell-differentiated fat cells are capable of replication. This new finding offers novel insights into our understanding of fat cell expansion and the development of obesity. Real-time imaging in live cells allows synchronized investigation of mitochondrial biogenesis and adipogenesis in stem cell differentiation without reducing living cells to nonliving samples for functional analysis. Live-cell real-time imaging can thus be a faithful and immediate tool for molecular diagnostic medicine. Furthermore, our results suggest that mitochondrial remodeling can be a useful approach in treating adiposity, diabetes, and abnormalities in energy metabolism and vascular signaling.


Sign in / Sign up

Export Citation Format

Share Document