scholarly journals Integrative utility of long read sequencing-based whole genome analysis and phenotypic assay on differentiating isoniazid-resistant signature of Mycobacterium tuberculosis

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Ming-Chih Yu ◽  
Ching-Sheng Hung ◽  
Chun-Kai Huang ◽  
Cheng-Hui Wang ◽  
Yu-Chih Liang ◽  
...  

Abstract Background With the advancement of next generation sequencing technologies (NGS), whole-genome sequencing (WGS) has been deployed to a wide range of clinical scenarios. Rapid and accurate classification of drug-resistant Mycobacterium tuberculosis (MTB) would be advantageous in reducing the amplification of additional drug resistance and disease transmission. Methods In this study, a long-read sequencing approach was subjected to the whole-genome sequencing of clinical MTB clones with susceptibility test profiles, including isoniazid (INH) susceptible clones (n = 10) and INH resistant clones (n = 42) isolated from clinical specimens. Non-synonymous variants within the katG or inhA gene associated with INH resistance was identified using Nanopore sequencing coupled with a corresponding analytical workflow. Results In total, 54 nucleotide variants within the katG gene and 39 variants within the inhA gene associated with INH resistance were identified. Consistency among the results of genotypic profiles, susceptibility test, and minimal inhibitory concentration, the high-INH resistance signature was estimated using the area under the receiver operating characteristic curve with the existence of Ser315Thr (AUC = 0.822) or Thr579Asn (AUC = 0.875). Conclusions Taken together, we curated lists of coding variants associated with differential INH resistance using Nanopore sequencing, which may constitute an emerging platform for rapid and accurate identification of drug-resistant MTB clones.

2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Sivakumar Shanmugam ◽  
Narender Kumar ◽  
Dina Nair ◽  
Mohan Natrajan ◽  
Srikanth Prasad Tripathy ◽  
...  

The genomes of 16 clinical Mycobacterium tuberculosis isolates were subjected to whole-genome sequencing to identify mutations related to resistance to one or more anti-Mycobacterium drugs. The sequence data will help in understanding the genomic characteristics of M. tuberculosis isolates and their resistance mutations prevalent in South India.


2019 ◽  
Vol 25 (3) ◽  
pp. 538-546
Author(s):  
Imen Bouzouita ◽  
Andrea Maurizio Cabibbe ◽  
Alberto Trovato ◽  
Henda Daroui ◽  
Asma Ghariani ◽  
...  

2018 ◽  
Vol 4 (suppl_1) ◽  
Author(s):  
T Iketleng ◽  
T Mogashoa ◽  
B Mbeha ◽  
L Letsibogo ◽  
J Makhema ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117771 ◽  
Author(s):  
Asho Ali ◽  
Zahra Hasan ◽  
Ruth McNerney ◽  
Kim Mallard ◽  
Grant Hill-Cawthorne ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160992 ◽  
Author(s):  
Kiatichai Faksri ◽  
Jun Hao Tan ◽  
Areeya Disratthakit ◽  
Eryu Xia ◽  
Therdsak Prammananan ◽  
...  

2018 ◽  
Vol 57 (1) ◽  
Author(s):  
Farzam Vaziri ◽  
Thomas A. Kohl ◽  
Hasan Ghajavand ◽  
Mansour Kargarpour Kamakoli ◽  
Matthias Merker ◽  
...  

ABSTRACT The emergence and spread of multidrug resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains is a critical global health problem. Between 2014 and 2018, 606 MTBC strains were isolated from 13,892 suspected pulmonary tuberculosis (TB) patients in Tehran, Iran, including 16 (2.6%) MDR-TB cases. A combination of phenotypic and genotypic methods (whole-genome sequencing) was employed for the identification of additional drug resistances and strain-to-strain genetic distances as a marker for recent transmission events. MDR and extensively drug-resistant (XDR) TB cases were almost exclusively infected by lineage 2/Beijing strains (14/16, P < 0.001). We further showed that recent transmission and/or recent introduction of lineage 2/Beijing strains contribute to high XDR-TB rates among all MDR-TB cases and should be considered an emerging threat for TB control in Tehran. In addition, the extensive pre-existing drug resistance profiles of MDR/XDR strains will further challenge TB diagnostics in the region.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nguyen Thi Le Hang ◽  
Minako Hijikata ◽  
Shinji Maeda ◽  
Pham Huu Thuong ◽  
Jun Ohashi ◽  
...  

Abstract Drug-resistant tuberculosis (TB) is a serious global problem, and pathogen factors involved in the transmission of isoniazid (INH)-resistant TB have not been fully investigated. We performed whole genome sequencing of 332 clinical Mycobacterium tuberculosis (Mtb) isolates collected from patients newly diagnosed with smear-positive pulmonary TB in Hanoi, Vietnam. Using a bacterial genome-wide approach based on linear mixed models, we investigated the associations between 31-bp k-mers and clustered strains harboring katG-S315T, a major INH-resistance mutation in the present cohort and in the second panel previously published in South Africa. Five statistically significant genes, namely, PPE18/19, gid, emrB, Rv1588c, and pncA, were shared by the two panels. We further identified variants of the genes responsible for these k-mers, which are relevant to the spread of INH-resistant strains. Phylogenetic convergence test showed that variants relevant to PPE46/47-like chimeric genes were significantly associated with the same phenotype in Hanoi. The associations were further confirmed after adjustment for the confounders. These findings suggest that genomic variations of the pathogen facilitate the expansion of INH-resistance TB, at least in part, and our study provides a new insight into the mechanisms by which drug-resistant Mtb maintains fitness and spreads in Asia and Africa.


Sign in / Sign up

Export Citation Format

Share Document