scholarly journals Aspergillus caespitosus ASEF14, an oleaginous fungus as a potential candidate for biodiesel production using sago processing wastewater (SWW)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Naganandhini Srinivasan ◽  
Kiruthika Thangavelu ◽  
Ashika Sekar ◽  
B. Sanjeev ◽  
Sivakumar Uthandi

Abstract Background Oleaginous microorganisms are sustainable alternatives for the production of biodiesel. Among them, oleaginous fungi are known for their rapid growth, short life cycles, no light requirement, easy scalability, and the ability to grow in cheap organic resources. Among all the sources used for biodiesel production, industrial wastewater streams have been least explored. We used oleaginous fungi to decontaminate sago processing wastewater and produce biodiesel. Results Among the 15 isolates screened for lipid production and starch utilization using the Nile red staining assay and amylase plate screening, three isolates accumulated > 20% (w/w) of their dry cell mass as lipids. The isolate ASEF14 exhibited the highest lipid accumulation (> 40%) and was identified as Aspergillus caespitosus based on the 28S rRNA gene sequencing. The maximum lipid content of 54.4% in synthetic medium (SM) and 37.2% in sago processing wastewater (SWW) was produced by the strain. The Fourier-transform infrared (FTIR) spectroscopy of the fungal oil revealed the presence of functional peaks corresponding to major lipids. Principal component analysis (PCA) of the FTIR data revealed major changes in the fatty acid composition during the transition from the growth phase (Days 1–3) to the lipid accumulation phase (Days 4–7). The fatty acid methyl esters (FAME) analysis of fungal oil from SWW contained 43.82% and 9.62% of saturated and monounsaturated fatty acids, respectively. The composition and percentage of individual FAME derived from SWW were different from SM, indicating the effect of nutrient and fermentation time. The fuel attributes of the SM- and SWW-grown fungal biodiesel (kinematic viscosity, iodine value, cetane number, cloud and pour point, linolenic acid content, FA > 4 double bonds) met international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards. In addition to biodiesel production, the strain removed various contaminants such as total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and cyanide up to 58.6%, 53.0%, 35.2%, 94.5%, 89.3%, 91.3%, 74.0%, 47.0%, and 53.84%, respectively, from SWW. Conclusion These findings suggested that A. caespitosus ASEF14 is a potential candidate with high lipid accumulating ability (37.27%), capable of using SWW as the primary growth medium. The medium and incubation time alter the FAME profile of this fungus. The physical properties of fungal oil were in accordance with the biodiesel standards. Moreover, it decontaminated SWW by reducing several polluting nutrients and toxicants. The fungal biodiesel produced by this cost-effective method could serve as an alternate path to meet global energy demand.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11525
Author(s):  
Hong Li ◽  
Jun Tan ◽  
Yun Mu ◽  
Jianfeng Gao

Chlorella has become an important raw material for biodiesel production in recent years, and Chlorella sp. TLD6B, a species with high lipid concentrations and high salt and drought tolerance, has been cultivated on a large scale. To explore the lipid accumulation of Chlorella sp. TLD6B and its relationship to external NaCl concentrations, we performed physiological measurements and genome-wide gene expression profiling under different levels of salt stress. Chlorella sp. TLD6B was able to tolerate high levels of salt stress (0.8 M NaCl addition). Lipid concentrations initially increased and then decreased as salt stress increased and were highest under the addition of 0.2 M NaCl. Comparative transcriptomic analysis revealed that salt stress enhanced the expression of genes related to sugar metabolism and fatty acid biosynthesis (the ACCases BC and BCCP, KAS II, and GPDHs involved in TAG synthesis), thereby promoting lipid accumulation under the addition of 0.2 M NaCl. However, high salinity inhibited cell growth. Expression of three SADs, whose encoded products function in unsaturated fatty acid biosynthesis, was up-regulated under high salinity (0.8 M NaCl addition). This research clarifies the relationship between salt tolerance and lipid accumulation and promotes the utilization of Chlorella sp. TLD6B.


Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 367 ◽  
Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


2021 ◽  
Vol 22 (3) ◽  
pp. 1304
Author(s):  
Hang Su ◽  
Jia Feng ◽  
Junping Lv ◽  
Qi Liu ◽  
Fangru Nan ◽  
...  

The oleaginous microalgae species Chlorococcum sphacosum GD is a promising feedstock for biodiesel production from soil. However, its metabolic mechanism of lipid production remains unclear. In this study, the lipid accumulation and metabolism mechanisms of Chlorococcum sphacosum GD were analyzed under salt stress based on transcriptome sequencing. The biomass and lipid content of the alga strain were determined under different NaCl concentrations, and total RNA from fresh cells were isolated and sequenced by HiSeq 2000 high throughput sequencing technology. As the salt concentration increased in culture medium, the algal lipid content increased but the biomass decreased. Following transcriptome sequencing by assembly and splicing, 24,128 unigenes were annotated, with read lengths mostly distributed in the 200–300 bp interval. Statistically significant differentially expressed unigenes were observed in different experimental groups, with 2051 up-regulated genes and 1835 down-regulated genes. The lipid metabolism pathway analysis showed that, under salt stress, gene-related fatty acid biosynthesis (ACCase, KASII, KAR, HAD, FATA) was significantly up-regulated, but some gene-related fatty acid degradation was significantly down-regulated. The comprehensive results showed that salt concentration can affect the lipid accumulation and metabolism of C. sphacosum GD, and the lipid accumulation is closely related to the fatty acid synthesis pathway.


2021 ◽  
Vol 13 (12) ◽  
pp. 6606
Author(s):  
Laura Vélez-Landa ◽  
Héctor Ricardo Hernández-De León ◽  
Yolanda Del Carmen Pérez-Luna ◽  
Sabino Velázquez-Trujillo ◽  
Joel Moreira-Acosta ◽  
...  

Microalgal biomass has the capacity to accumulate relatively large quantities of triacylglycerides (TAG) for the conversion of methyl esters of fatty acids (FAME) which has made microalgae a desirable alternative for the production of biofuels. In the present work Verrucodesmus verrucosus was evaluated under autotrophic growth conditions as a suitable source of oil for biodiesel production. For this purpose BG11 media were evaluated in three different light:dark photoperiods (L:D; 16:08; 12:12; 24:0) and light intensities (1000, 2000 and 3000 Lux) in a photobioreactor with a capacity of three liters; the evaluation of the microalgal biomass was carried out through the cell count with the use of the Neubauer chamber followed by the evaluation of the kinetic growth parameters. So, the lipid accumulation was determined through the lipid extraction with a Soxhlet system. Finally, the fatty acid profile of the total pooled lipids was determined using gas chromatography-mass spectroscopy (GC-MS). The results demonstrate that the best conditions are a photoperiod of 12 light hours and 12 dark hours with BG11 medium in a 3 L tubular photobioreactor with 0.3% CO2, 25 °C and 2000 Lux, allowing a lipid accumulation of 50.42%. Palmitic acid is identified as the most abundant fatty acid at 44.90%.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1608-1608
Author(s):  
Olugbenga Balogun ◽  
Ya Pei ◽  
Hye Won Kang

Abstract Objectives Excessive fat accumulation in the body, indicated as obesity causes development of other metabolic diseases, such as diabetes and cardiovascular diseases. Due to limitations of current strategies such as long-term engagement and high cost, new strategies to reduce the prevalence of obesity are needed. Garlic scape (Allium sativum L.) is the flower bud of the garlic plant that is removed to promote the growth of the bulb. Although most of garlic scape are trashed as a byproduct of garlic in the farm, it is still edible and includes various phytochemicals to improve human health. The purpose of this study was to investigate anti-obesity effect of garlic scape and its mechanism using 3T3-L1 cells. Methods Garlic scape extract (GSE) was prepared by solvent extraction using 80% methanol (v/v). 3T3-L1 cells, mouse embryonic fibroblast cells that mimic preadipocytes, were incubated with GSE during the differentiation. Total RNA and proteins from the cells were extracted. The expression of genes related to lipid metabolism such as peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C\EBP) α and β, adipocyte protein (aP) 2, acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), sterol regulated element binding protein (SREBP) 1c, and carnitine palmitoyltransferase (CPT) 1α was determined using a quantitative PCR. The expression of proteins such as hormone sensitive lipase (HSL), ACC, and AMPK-activated protein kinase (AMPK) was measured using a western blot. Effect of GSE on lipid accumulation were visualized and quantified using Oil Red O staining. Results GSE decreased the expression of genes related to adipogenesis (PPARγ, C\EBPα, and C\EBPβ) and lipogenesis (ACC, FAS, and SREBP1c) whereas HSL and CPT1α genes and proteins related to lipolysis and fatty acid oxidation were not changed. Phosphorylation on both AMPK and ACC were increased. Adipocytes that were treated with GSE showed reduced lipid accumulation. Conclusions GSE inhibits fat accumulation in white adipocytes by decreasing adipogenesis and lipogenesis through possibly a AMPK pathway. Garlic scape may be a potential candidate to improve obese conditions. Funding Sources This work was supported by USDA.


Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


2020 ◽  
Author(s):  
Ghada Youssef ◽  
Ahmed Elrefaey ◽  
Samy El-Assar

Abstract The present work, aiming to exploit oleaginous fungi for biodiesel production. Ten fungal strains were isolated from two petroleum polluted soil samples and screened for their abilities to accumulate lipid. Lipid rich three species viz, Aspergillus terreus, Aspergillus niger and Aspergillus flavus were found to be the highest lipid producers. Potential isolates were identified at the species level by morphological (macroscopic and microscopic) examination and molecularly confirmed by using 18S rRNA gene sequencing. Improvement of lipid accumulation by optimization of various parameters of culture conditions. The results reported clearly that the most suitable medium conditions for highest lipid production (38.33%) of Aspergillus terreus as the most potent lipid producer composed of 5% sucrose, 0.5 g/L ammonium nitrate with initial pH 6.0, after seven days of incubation in a static condition. The three promising fungal isolates have been taken for fatty acids analysis by gas chromatograph (GC) after transesterification. Fatty acid methyl esters (FAME) profile indicated the presence of higher saturated fatty acid fractions compared to polyunsaturated fatty acids. The total concentration of fatty acids was 107.98, 38.29, and 37.48 mg/100g of lipid accumulated by A. terreus, A. niger and A. flavus, respectively. Gas chromatograph analysis of A. terreus lipid indicated that oleic acid (C18:1, 18.51%) was the most abundant fatty acid, followed by stearic acid (C18:0, 15.91%) and Myristic acid (C14:0, 14.64%), respectively. Therefore, fatty acid profile of A. terreus has confirmed its potentiality as feedstock for producing lipid for biodiesel manufacturing.


2020 ◽  
Author(s):  
Thu Ha Thi Nguyen ◽  
Seunghye Park ◽  
Jooyeon Jeong ◽  
Ye Sol Shin ◽  
Sang Jun Sim ◽  
...  

Abstract Background Currently, most of the attention in renewable energy industry is focused on the development of alternative, sustainable energy sources. Microalgae are a promising feedstock for biofuel production in response to the energy crisis. The use of metabolic engineering to improve yields of biofuel-related lipid components in microalgae, without affecting cell growth, is now a promising approach to develop more sustainable energy sources and to make this approach more economically feasible. Results The CRISPR-Cas9 system was successfully applied to generate a target-specific knockout of the ELT gene in Chlamydomonas reinhardtii . The target gene encodes an enzyme involved in lipid catabolism, in which the knockout phenotype impacts fatty acid degradation. As a result, the knockout mutants show up to 28.52% increased total lipid accumulation in comparison with the wild-type strain. This is also accompanied by a shift in the fatty acid composition with an increase of up to 27.2% in the C18:1 proportion. These changes do not significantly impact cell growth. Conclusion This study provides useful insights for the improvement of the oleaginous microalgae strain for biodiesel production. The acquired elt mutants showed improved lipid accumulation and productivity without compromising the growth rate.


2016 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Windi Monica Surbakti ◽  
Gerson Rico M.H ◽  
Mersi Suriani Sinaga

Glycerol as a byproduct of biodiesel production was approximately formed 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic non glycerol (MONG) have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of chloroform to glycerol purification process with acidification method using hydrochloric acid as pretreatment process. This research was begun with acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, that are more easily separated from glycerol. Then the process was continued with extraction by the solvent chloroform using the variable of test volume ratio (v/v) (1:1, 1:1.5, 1:2)  and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90,9082% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.


Sign in / Sign up

Export Citation Format

Share Document