scholarly journals The effective function of circular RNA in colorectal cancer

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mandana Ameli-Mojarad ◽  
Melika Ameli-Mojarad ◽  
Mahrooyeh Hadizadeh ◽  
Chris Young ◽  
Hosna Babini ◽  
...  

AbstractColorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Long ◽  
Zhi Lin ◽  
Liang Li ◽  
Min Ma ◽  
Zhixing Lu ◽  
...  

AbstractColorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 770 ◽  
Author(s):  
Xiao Yuan ◽  
Ya Yuan ◽  
Zhi He ◽  
Diyan Li ◽  
Bo Zeng ◽  
...  

Circular ribonucleic acids (circRNAs), which are a type of covalently closed circular RNA, are receiving increasing attention. An increasing amount of evidence suggests that circRNAs are involved in the biogenesis and development of multiple diseases such as digestive system cancers. Dysregulated circRNAs have been found to act as oncogenes or tumour suppressors in digestive system cancers. Moreover, circRNAs are related to ageing and a wide variety of processes in tumour cells, such as cell apoptosis, invasion, migration, and proliferation. Moreover, circRNAs can perform a remarkable multitude of biological functions, such as regulating splicing or transcription, binding RNA-binding proteins to enable function, acting as microRNA (miRNA) sponges, and undergoing translated into proteins. However, in digestive system cancers, circRNAs function mainly as miRNA sponges. Herein, we summarise the latest research progress on biological functions of circRNAs in digestive system cancers. This review serves as a synopsis of potential therapeutic targets and biological markers for digestive system cancer.


2021 ◽  
Vol 8 (4) ◽  
pp. 157-167
Author(s):  
Seyedeh Zahra Bakhti ◽  
Sana Dadashi ◽  
Anahita Dah Pahlevan ◽  
Fatemeh Kafshresan

Circular RNAs (circRNAs) are a complicated class of non-coding RNAs that have a covalently closed loop structure and are very stable and cautious. Multiple biological processes of malignancy, including tumorigenesis, development, invasion, metastasis, apoptosis, and vascularization, are disrupted by an increased number of circRNAs. Recent research has showed that circRNAs, functioning as microRNA (miRNA) sponges or protein scaffolds, interacting with RNA-binding proteins (RBPs), and autophagy regulators, affect the transcription and splicing regulation. Many circRNAs have tissue-specific expression patterns and are heavily conserved. CircRNA levels in neurons are dynamically modulated. Growing evidence suggests that circRNAs are highly abundant in neural tissues, perhaps owing to the proliferation of particular genes that promote circularization, implying that circRNA dysregulation is linked to nervous system disorders including glioma. The most widespread and deadly primary malignant brain tumor is glioma. CircRNA has a close connection to glioma, according to reported research. Here, the current knowledge about the properties of circRNAs is introduced and the biological and molecular functions of circRNAs are described. Then, the clinical association of circRNAs with glioma/glioblastoma and their level of expression and their regulatory mechanisms in tumorigenesis are discussed. Moreover, the potential of circRNAs as diagnostic biomarkers and predictors of brain cancer risk and possible therapeutic targets in medicine is examined.


2021 ◽  
Vol 22 (13) ◽  
pp. 6765
Author(s):  
Izabela Suster ◽  
Yue Feng

MicroRNAs (miRNAs) are small, non-coding RNAs that function as endogenous gene silencers. Soon after the discovery of miRNAs, a subset of brain-enriched and brain-specific miRNAs were identified and significant advancements were made in delineating miRNA function in brain development. However, understanding the molecular mechanisms that regulate miRNA biogenesis in normal and diseased brains has become a prevailing challenge. Besides transcriptional regulation of miRNA host genes, miRNA processing intermediates are subjected to multifaceted regulation by canonical miRNA processing enzymes, RNA binding proteins (RBPs) and epitranscriptomic modifications. Further still, miRNA activity can be regulated by the sponging activity of other non-coding RNA classes, namely circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Differential abundance of these factors in neuronal and glial lineages partly underlies the spatiotemporal expression and function of lineage-specific miRNAs. Here, we review the continuously evolving understanding of the regulation of neuronal and glial miRNA biogenesis at the transcriptional and posttranscriptional levels and the cooperativity of miRNA species in targeting key mRNAs to drive lineage-specific development. In addition, we review dysregulation of neuronal and glial miRNAs and the detrimental impacts which contribute to developmental brain disorders.


2021 ◽  
Vol 22 (14) ◽  
pp. 7477
Author(s):  
Rok Razpotnik ◽  
Petra Nassib ◽  
Tanja Kunej ◽  
Damjana Rozman ◽  
Tadeja Režen

Circular RNAs (circRNAs) are increasingly recognized as having a role in cancer development. Their expression is modified in numerous cancers, including hepatocellular carcinoma (HCC); however, little is known about the mechanisms of their regulation. The aim of this study was to identify regulators of circRNAome expression in HCC. Using publicly available datasets, we identified RNA binding proteins (RBPs) with enriched motifs around the splice sites of differentially expressed circRNAs in HCC. We confirmed the binding of some of the candidate RBPs using ChIP-seq and eCLIP datasets in the ENCODE database. Several of the identified RBPs were found to be differentially expressed in HCC and/or correlated with the overall survival of HCC patients. According to our bioinformatics analyses and published evidence, we propose that NONO, PCPB2, PCPB1, ESRP2, and HNRNPK are candidate regulators of circRNA expression in HCC. We confirmed that the knocking down the epithelial splicing regulatory protein 2 (ESRP2), known to be involved in the maintenance of the adult liver phenotype, significantly changed the expression of candidate circRNAs in a model HCC cell line. By understanding the systemic changes in transcriptome splicing, we can identify new proteins involved in the molecular pathways leading to HCC development and progression.


2019 ◽  
Vol 35 (23) ◽  
pp. 4867-4870
Author(s):  
Chengyu Liu ◽  
Yu-Chen Liu ◽  
Hsien-Da Huang ◽  
Wei Wang

Abstract Motivation In recent years, multiple circular RNAs (circRNA) biogenesis mechanisms have been discovered. Although each reported mechanism has been experimentally verified in different circRNAs, no single biogenesis mechanism has been proposed that can universally explain the biogenesis of all tens of thousands of discovered circRNAs. Under the hypothesis that human circRNAs can be categorized according to different biogenesis mechanisms, we designed a contextual regression model trained to predict the formation of circular RNA from a random genomic locus on human genome, with potential biogenesis factors of circular RNA as the features of the training data. Results After achieving high prediction accuracy, we found through the feature extraction technique that the examined human circRNAs can be categorized into seven subgroups, according to the presence of the following sequence features: RNA editing sites, simple repeat sequences, self-chains, RNA binding protein binding sites and CpG islands within the flanking regions of the circular RNA back-spliced junction sites. These results support all of the previously reported biogenesis mechanisms of circRNA and solidify the idea that multiple biogenesis mechanisms co-exist for different subset of human circRNAs. Furthermore, we uncover a potential new links between circRNA biogenesis and flanking CpG island. We have also identified RNA binding proteins putatively correlated with circRNA biogenesis. Availability and implementation Scripts and tutorial are available at http://wanglab.ucsd.edu/star/circRNA. This program is under GNU General Public License v3.0. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
M Longo ◽  
R Tikhomirov ◽  
S Castelvecchio ◽  
...  

Abstract Background Circular RNAs (circRNAs) are an emerging class of noncoding RNAs stemming from the splicing and circularization of pre-mRNAs exons. CircRNAs can regulate transcription and splicing, sequester microRNAs acting as “sponge” and inducing the respective targets, and bind to RNA binding proteins. Recently, they have been found deregulated in dilated cardiomyopathies (DCM), one of the cardiovascular diseases with the worst rate of morbidity and mortality, and whose molecular mechanisms are only partially known. Purpose Therein, we will evaluate in ischemic DCM patients the modulation of 17 circRNAs, 14 out of them obtained from literature data on DCM ischemic or not, while the other 3 were circRNAs not characterized in the heart previously. The study aims to identify circRNAs candidates for further functional characterization in DCM. In addition, as differential expression (DE) analysis is not easily performed for circRNAs in RNA-seq datasets, the validated circRNAs will be used to set up the most specific and sensitive bioinformatics pipeline for circRNA-DE analysis. Methods We designed divergent and convergent specific primers for 17 circRNAs and their host gene, respectively, and their amplification efficiency was measured by RT-qPCR. Transcripts expression was measured in left ventricle biopsies of 12 patients affected by non end-stage ischemic HF and of 12 matched controls. Results We identified cPVT1, cANKRD17, cBPTF as DE, and validated the modulation of 5 out of the 14 DCM-related circRNAs (cHIPK3, cALPK2, cPCMTD1, cNEBL, cSLC8A1), while cPDRM5, cTTN1 showed opposite modulation, which may be due to the specific disease condition. All of them were modulated differently from the respective host gene. CircRNA/miRNA interactions were predicted using Starbase 3.0. Next, mRNAs-targets of the identified miRNAs were predicted by mirDIP 4.1 and intersected with gene expression datasets of the same patients, previously obtained by microarray analysis. We found that cBPTF and cANKRD17 might sponge 12 and 2 miRNAs, respectively. Enrichment analysis of the relevant targets identified several important pathways implicated in DCM, such as MAPK, FoxO, EGFR, VEGF and Insulin/IGF pathways. In addition, deep RNA-Seq analysis that is currently ongoing and the validated circRNAs will be used to optimize the bioinformatics pipeline for circRNA DE analysis. Conclusions We identified a subset of circRNAs deregulated in ischemic HF potentially implicated in HF pathogenesis.


2021 ◽  
Author(s):  
Dong Cao

Circular RNAs (circRNAs) are always expressed tissue-specifically, suggestive of specific factors that regulate their biogenesis. Here, taking advantage of available mutation strains of RNA binding proteins (RBPs) in Caenorhabditis elegans, I performed a screening of circRNA regulation in thirteen conserved RBPs. Among them, loss of FUST-1, the homolog of FUS (Fused in Sarcoma), caused downregulation of multiple circRNAs. By rescue experiments, I confirmed FUST-1 as a circRNA regulator. Further, I showed that FUST-1 regulates circRNA formation without affecting the levels of the cognate linear mRNAs. When recognizing circRNA pre-mRNAs, FUST-1 can affect both exon-skipping and circRNA in the same genes. Moreover, I identified an autoregulation loop in fust-1, where FUST-1, isoform a promotes the skipping of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b with different N-terminal sequences. FUST-1, isoform a is the functional isoform in circRNA regulation. Although FUST-1, isoform b has the same functional domains as isoform a, it cannot regulate either exon-skipping or circRNA formation.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5113
Author(s):  
Agnieszka Rybak-Wolf ◽  
Mireya Plass

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.


2020 ◽  
Author(s):  
Kun Wang ◽  
Zhimin Zhou ◽  
Junping Bao ◽  
Dong Liu ◽  
Yuanbin Hu ◽  
...  

Abstract Background: More and more evidences show that non-coding RNAs are involved in neuropathic pain, however, there are few reports on the regulatory mechanism of competitive endogenous RNA (ceRNA) in neuropathic pain. The purpose of this study is to explore the possible molecular mechanisms of neuropathic pain. Methods: We collected neuropathic pain-related microarray datasets providing expression profile of circular RNAs (circRNAs) and mRNAs from the Gene Expression Omnibus (GEO) and then performed bioinformatics analysis on them. Results: The present study has identified that up-regulated circRNAs primarily regulate the activity of focal adhesion-associated biological processes and down-regulated primarily regulate the activity of metabolic-associated biological processes by means of ceRNAs. Conclusions: Our data suggest that circRNAs may be candidates for pathogenesis in neuropathic pain and may be considered as promising therapeutic targets in the future.


Sign in / Sign up

Export Citation Format

Share Document