scholarly journals Near infrared light fluorescence imaging-guided biomimetic nanoparticles of extracellular vesicles deliver indocyanine green and paclitaxel for hyperthermia combined with chemotherapy against glioma

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Meng Wang ◽  
Chen-Yan Lv ◽  
Shu-Ang Li ◽  
Jun-Kuan Wang ◽  
Wen-Zheng Luo ◽  
...  

Abstract Background We investigated the therapeutic effect of targeting extracellular vesicles (EVs) loaded with indocyanine green (ICG) and paclitaxel (PTX) on glioma. Methods Raw264.7 cells were harvested to extract EVs for the preparation of ICG/PTX@RGE-EV by electroporation and click chemistry. We evaluated the success of modifying Neuropilin-1 targeting peptide (RGE) on the EV membrane of ICG/PTX@RGE-EV using super-resolution fluorescence microscopy and flow cytometry. Spectrophotometry and high performance liquid chromatography (HPLC) were implemented for qualitative and quantitative analysis of the ICG and PTX loaded in EVs. Photothermal properties of the vesicles were evaluated by exposing to 808-nm laser light. Western blot analysis, cell counting kit 8 (CCK-8), Calcein Acetoxymethyl Ester/propidium iodide (Calcein-AM/PI) staining, and flow cytometry were utilized for assessing effects of vesicle treatment on cellular behaviors. A nude mouse model bearing glioma was established to test the targeting ability and anti-tumor action of ICG/PTX@RGE-EV in vivo. Results Under exposure to 808-nm laser light, ICG/PTX@RGE-EV showed good photothermal properties and promotion of PTX release from EVs. ICG/PTX@RGE-EV effectively targeted U251 cells, with activation of the Caspase-3 pathway and elevated apoptosis in U251 cells through chemotherapy combined with hyperthermia. The anti-tumor function of ICG/PTX@RGE-EV was confirmed in the glioma mice via increased accumulation of PTX in the ICG/PTX@RGE-EV group and an increased median survival of 48 days in the ICG/PTX@RGE-EV group as compared to 25 days in the PBS group. Conclusion ICG/PTX@RGE-EV might actively target glioma to repress tumor growth by accelerating glioma cell apoptosis through combined chemotherapy-hyperthermia. Graphic Abstract

2018 ◽  
Vol 64 (4) ◽  
pp. 680-689 ◽  
Author(s):  
Leonie de Rond ◽  
Edwin van der Pol ◽  
Chi M Hau ◽  
Zoltan Varga ◽  
Auguste Sturk ◽  
...  

Abstract BACKGROUND Extracellular vesicles (EVs) in biofluids are potential biomarkers of disease. To explore the clinical relevance of EVs, a specific generic EV marker would be useful, one that does not require antibodies and binds to all EVs. Here we evaluated 5 commonly used generic markers for flow cytometry. METHODS Flow cytometry (A60-Micro, Apogee) was used to evaluate the ability of the generic EV markers calcein acetoxymethyl ester, calcein acetoxymethyl ester violet, carboxyfluorescein succinimidyl ester (CFSE), 4-(2-[6-(dioctylamino)-2-naphthalenyl]ethenyl)-1-(3-sulfopropyl)pyridinium (di-8-ANEPPS), and lactadherin to stain EVs from MCF7 human breast adenocarcinoma cell line-conditioned culture medium [epithelial cell adhesion molecule positive (EpCAM+)] or platelet EVs from human plasma [integrin β3 positive (CD61+)]. Side scatter triggering was applied as a reference, and the influence of non-EV components (proteins and lipoproteins) was evaluated. RESULTS Di-8-ANEPPS, lactadherin, and side scatter detected 100% of EpCAM+ MCF7 EVs. Lactadherin and side scatter detected 33% and 61% of CD61+ EVs, respectively. Di-8-ANEPPS detected platelet EVs only if soluble protein was first removed. Because all generic markers stained proteins, at best 33% of platelet EVs in plasma were detected. The calcein markers and CFSE were either insensitive to EVs in both samples or associated with swarm detection. CONCLUSIONS None of the generic markers detected all and only EVs in plasma. Side scatter triggering detected the highest concentration of plasma EVs on our A60-Micro, followed by lactadherin. The choice between scatter or lactadherin primarily depends on the analytical sensitivity of the flow cytometer used.


2002 ◽  
Vol 117 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Emanuela Keller ◽  
Hideyuki Ishihara ◽  
Andreas Nadler ◽  
Peter Niederer ◽  
Burkhardt Seifert ◽  
...  

1997 ◽  
Vol 5 (2) ◽  
pp. 83-89 ◽  
Author(s):  
V.A. McGlone ◽  
H. Abe ◽  
S. Kawano

Kiwifruit firmness was estimated by scattering 864 nm laser light through the fruit to exiting angles at 20 to 55° around the circumference of the fruit from the incident beam. The intensity of scattered light emitted from the fruit increased with decreasing firmness, especially at larger angles. The intensity changes were modelled using an inverse power law relationship between the intensity and a distance factor D = sin(θ / 2), where θ is the exiting angle. With increasing firmness the proportionality constant S increases and the power coefficient of D, – n, decreases. The logarithm of S gave the best linear regression results against stiffness and rupture force; two standard measures of fruit firmness, with R2 values of 83% and 79%, respectively.


2018 ◽  
Vol 78 (01) ◽  
pp. 54-62 ◽  
Author(s):  
Andreas Hackethal ◽  
Markus Hirschburger ◽  
Sven Eicker ◽  
Thomas Mücke ◽  
Christoph Lindner ◽  
...  

AbstractModern surgical strategies aim to reduce trauma by using functional imaging to improve surgical outcomes. This reviews considers and evaluates the importance of the fluorescent dye indocyanine green (ICG) to visualize lymph nodes, lymphatic pathways and vessels and tissue borders in an interdisciplinary setting. The work is based on a selective search of the literature in PubMed, Scopus, and Google Scholar and the authorsʼ own clinical experience. Because of its simple, radiation-free and uncomplicated application, ICG has become an important clinical indicator in recent years. In oncologic surgery ICG is used extensively to identify sentinel lymph nodes with promising results. In some studies, the detection rates with ICG have been better than the rates obtained with established procedures. When ICG is used for visualization and the quantification of tissue perfusion, it can lead to fewer cases of anastomotic insufficiency or transplant necrosis. The use of ICG for the imaging of organ borders, flap plasty borders and postoperative vascularization has also been scientifically evaluated. Combining the easily applied ICG dye with technical options for intraoperative and interventional visualization has the potential to create new functional imaging procedures which, in future, could expand or even replace existing established surgical techniques, particularly the techniques used for sentinel lymph node and anastomosis imaging.


2019 ◽  
Author(s):  
Shinsuke Nomura ◽  
Yuji Morimoto ◽  
Hironori Tsujimoto ◽  
Manabu Harada ◽  
Daizoh Saitoh ◽  
...  

AbstractIndocyanine green (ICG) is a near-infrared light-absorbing substance. Thus, when a tumor in which ICG has accumulated is irradiated with a near-infrared (NIR) laser, only the tumor can be heated by a photothermal reaction. We developed ICG lactosome, a novel drug delivery system (DDS) composed of polymeric micelles and ICG that shows selective accumulation in tumor based on an enhanced permeability and retention (EPR) effect. We showed that ICG lactosome accumulated in a tumor by using an intradermal tumor mouse model of a murine colon cancer cell line (Colon26) transfected with Nano lantern luminescent protein (NLC26). Two days after the administration of ICG lactosome, the tumor was irradiated with an 808-nm diode-laser while monitoring tumor temperature. The results showed that the treated tumors were cured when the peak of tumor temperature during NIR irradiation reached 43°C or higher. To verify these results, photothermal therapy (PTT) using ICG lactosome was carried out using a newly developed system that can control the temperature at the NIR irradiation site at a constant level. All of the tumors that had been kept at 43°C during irradiation were cured, while 2 of 5 tumors that had been kept at 42°C were not cured, and none of tumors that had been kept at a temperature below 41°C were cured. ICG lactosome-assisted PTT combined with thermal dosimetry is a highly reliable method for cancer treatment and may afford further clinical opportunities for PTT.


Sign in / Sign up

Export Citation Format

Share Document