scholarly journals Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota–gut–brain axis

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun Diao ◽  
Yinyin Xia ◽  
Xuejun Jiang ◽  
Jingfu Qiu ◽  
Shuqun Cheng ◽  
...  

Abstract Background Silicon dioxide nanoparticles (SiO2NPs) are widely used as additive in the food industry with controversial health risk. Gut microbiota is a new and hot topic in the field of nanotoxicity. It also contributes a novel and insightful view to understand the potential health risk of food-grade SiO2NPs in children, who are susceptible to the toxic effects of nanoparticles. Methods In current study, the young mice were orally administrated with vehicle or SiO2NPs solution for 28 days. The effects of SiO2NPs on the gut microbiota were detected by 16S ribosomal RNA (rRNA) gene sequencing, and the neurobehavioral functions were evaluated by open field test and Morris water maze. The level of inflammation, tissue integrity of gut and the classical indicators involved in gut–brain, gut–liver and gut–lung axis were all assessed. Results Our results demonstrated that SiO2NPs significantly caused the spatial learning and memory impairments and locomotor inhibition. Although SiO2NPs did not trigger evident intestinal or neuronal inflammation, they remarkably damaged the tissue integrity. The microbial diversity within the gut was unexpectedly enhanced in SiO2NPs-treated mice, mainly manifested by the increased abundances of Firmicutes and Patescibacteria. Intriguingly, we demonstrated for the first time that the neurobehavioral impairments and brain damages induced by SiO2NPs might be distinctively associated with the disruption of gut–brain axis by specific chemical substances originated from gut, such as Vipr1 and Sstr2. Unapparent changes in liver or lung tissues further suggested the absence of gut–liver axis or gut–lung axis regulation upon oral SiO2NPs exposure. Conclusion This study provides a novel idea that the SiO2NPs induced neurotoxic effects may occur through distinctive gut–brain axis, showing no significant impact on either gut–lung axis or gut–liver axis. These findings raise the exciting prospect that maintenance and coordination of gastrointestinal functions may be critical for protection against the neurotoxicity of infant foodborne SiO2NPs.

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Daotong Li ◽  
Yu Feng ◽  
Meiling Tian ◽  
Junfu Ji ◽  
Xiaosong Hu ◽  
...  

Abstract Background Ulcerative colitis is a type of chronic inflammatory bowel disease closely associated with gut microbiota dysbiosis and intestinal homeostasis dysregulation. Barley leaf (BL) has a long history of use in Traditional Chinese Medicine with potential health-promoting effects on intestinal functions. However, its mechanism of action is not yet clear. Here, we explore the potential modulating roles of gut microbial metabolites of BL to protect against colitis and elucidate the underlying molecular mechanisms. Results Using 16S rRNA gene-based microbiota analysis, we first found that dietary supplementation of BL ameliorated dextran sulfate sodium (DSS)-induced gut microbiota dysbiosis. The mechanisms by which BL protected against DSS-induced colitis were resulted from improved intestinal mucosal barrier functions via the activation of peroxisome proliferator-activated receptor (PPAR)γ signaling. In addition, metabolomic profiling analysis showed that the gut microbiota modulated BL-induced metabolic reprograming in the colonic tissues particularly by the enhancement of glycolysis process. Notably, dietary BL supplementation resulted in the enrichment of microbiota-derived purine metabolite inosine, which could activate PPARγ signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine reproduced similar protective effects as BL to protect against DSS-induced colitis through improving adenosine 2A receptor (A2AR)/PPARγ-dependent mucosal barrier functions. Conclusions Overall, our findings suggest that the gut microbiota-inosine-A2AR/PPARγ axis plays an important role in the maintenance of intestinal homeostasis, which may represent a novel approach for colitis prevention via manipulation of the gut microbial purine metabolite.


2020 ◽  
Vol 14 (12) ◽  
Author(s):  
Ayorinde O Afolayan ◽  
Funmilola A Ayeni

Introduction: Interactions between environmental factors (water and soil) and humans are inevitable, particularly in rural and semi-urbanized regions. As such, knowledge on the microbial constituents of these environmental factors is key to understanding potential risk to public health. However, the microbial profile of soil and water present in vulnerable human communities in Nigeria is currently unknown. This study sought to investigate the composition of soil and water microbiota in the environment inhabited by recently studied human communities (the Fulani nomadic group and the urbanized Jarawa ethnic group) and estimate the contribution of these environmental factors to the microbiome of the aforementioned human communities. Methodology: Soil and water samples were collected from the Fulani and non-Fulani community in Jengre (Plateau State, Nigeria) and Jos (Plateau State, Nigeria), respectively. Genomic DNA was extracted from these environmental samples, followed by Illumina sequencing of the V4 region of the 16S rRNA gene and bioinformatics analysis via Quantitative Insights into Microbial Ecology QIIME. Results: There is abundance of Proteobacteria (43%) signature members in soil samples obtained from both human communities. Analysis of the water samples revealed the abundance of Proteobacteria, particularly in water sourced from the borehole (Fulani). Pseudomonas (30%) had higher relative abundance in the drinking water of the Fulani. Conclusions: The drinking water of the Fulani could be a potential health risk to the studied Fulani community. Factors that increase the abundance of public health threats and health risk, such as hygiene practices, soil and water quality need to be studied further for the improvement of health in vulnerable populations.


2013 ◽  
Vol 58 (No. 7) ◽  
pp. 352-358 ◽  
Author(s):  
K. Wieczorek ◽  
I. Kania ◽  
J. Osek

Erythromycin-resistant Campylobacter were isolated from pig, cattle, and poultry carcasses slaughtered in Poland between 2008 and 2011. A total of 1335 strains were examined and among them 20 (1.5%) showed a high level of erythromycin resistance (≥ 32 mg/l) as determined by the microbroth dilution method. All these isolates were C. coli and mainly originated from poultry (15 strains). PCR amplification or DNA sequencing identified the mutation A2075G in the 23S rRNA gene in all strains tested. The vast majority of such C. coli were also resistant to quinolones, tetracyclines, and streptomycin whereas none of them revealed resistance to gentamycin. Furthermore, several isolates (14; 70.0%) displayed multi-resistance pattern against quinolones, aminoglycosides, and tetracyclines. PCR analysis identified several putative virulence genes such as cadF, flaA, and iam (present in all erythromycin resistant isolates) as well as the cdtA and flhA markers (19 and 16 strains, respectively) among C. coli tested. On the other hand, only two out of 20 isolates were positive for the ciaB and docA genes. Furthermore, none of the analysed strains had the virB11 and wlaN markers. A molecular relationship determination of the erythromycin-resistant C. coli performed by pulsed field gel electrophoresis (PFGE) revealed 17 different types. This reflects the high genetic diversity among the examined isolates. The results obtained suggest that erythromycin-resistant C. coli from food-producing animals may represent an underestimated potential health risk for consumers.  


mSystems ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Devin B. Holman ◽  
Brian W. Brunelle ◽  
Julian Trachsel ◽  
Heather K. Allen

ABSTRACT The results of this meta-analysis demonstrate that “study” and GI sample location are the most significant factors in shaping the swine gut microbiota. However, in comparisons of results from different studies, some biological factors may be obscured by technical variation among studies. Nonetheless, there are some bacterial taxa that appear to form a core microbiota within the swine GI tract regardless of country of origin, diet, age, or breed. Thus, these results provide the framework for future studies to manipulate the swine gut microbiota for potential health benefits. The swine gut microbiota encompasses a large and diverse population of bacteria that play a significant role in pig health. As such, a number of recent studies have utilized high-throughput sequencing of the 16S rRNA gene to characterize the composition and structure of the swine gut microbiota, often in response to dietary feed additives. It is important to determine which factors shape the composition of the gut microbiota among multiple studies and if certain bacteria are always present in the gut microbiota of swine, independently of study variables such as country of origin and experimental design. Therefore, we performed a meta-analysis using 20 publically available data sets from high-throughput 16S rRNA gene sequence studies of the swine gut microbiota. Next to the “study” itself, the gastrointestinal (GI) tract section that was sampled had the greatest effect on the composition and structure of the swine gut microbiota (P = 0.0001). Technical variation among studies, particularly the 16S rRNA gene hypervariable region sequenced, also significantly affected the composition of the swine gut microbiota (P = 0.0001). Despite this, numerous commonalities were discovered. Among fecal samples, the genera Prevotella, Clostridium, Alloprevotella, and Ruminococcus and the RC9 gut group were found in 99% of all fecal samples. Additionally, Clostridium, Blautia, Lactobacillus, Prevotella, Ruminococcus, Roseburia, the RC9 gut group, and Subdoligranulum were shared by >90% of all GI samples, suggesting a so-called “core” microbiota for commercial swine worldwide. IMPORTANCE The results of this meta-analysis demonstrate that “study” and GI sample location are the most significant factors in shaping the swine gut microbiota. However, in comparisons of results from different studies, some biological factors may be obscured by technical variation among studies. Nonetheless, there are some bacterial taxa that appear to form a core microbiota within the swine GI tract regardless of country of origin, diet, age, or breed. Thus, these results provide the framework for future studies to manipulate the swine gut microbiota for potential health benefits.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2990
Author(s):  
Zhen Wang ◽  
Hongxu Liu ◽  
Jiaxiu Liu ◽  
Xiaomeng Ren ◽  
Guoku Song ◽  
...  

Acrylamide (AA) has been extensively examined for its potential toxicological effects on humans and animals, but its impacts on gut microbiota and effects on hosts’ susceptibility to enteric infection remain elusive. The present study was designed to evaluate the effect of AA on gut microbiota of mice and susceptibility of mice to S. Typhimurium infection. After four weeks’ intervention, mice fed with AA exhibited significantly decreased body weight. Meanwhile, 16S rRNA gene sequencing showed reduced relative abundance of Firmicutes and increased abundance of Bacteroidetes in AA-treated mice prior to infection. In addition, we observed high relative abundance of Burkholderiales and Erysipelotrichales, more specifically the genus Sutterella and Allobaculum, respectively, in AA-treated mice before infection. Subsequently, the mice were orally infected with S. Typhimurium. The histological changes, systemic dissemination of S. Typhimurium, and inflammatory responses were examined. Compared to mice fed with normal diet, mice fed AA exhibited higher level of bacterial counts in liver, spleen, and ileum, which was consistent with exacerbated tissue damage determined by histological analyses. In addition, higher expression of pro-inflammaroty cytokines, p-IκBα, and p-P65 and lower mRNA expressions of mucin2, occludin, zo-1, claudin-1, and E-cadherin were detected in AA-treated mice. These findings provide novel insights into the potential health impact of AA consumption and the detailed mechanism for its effect on S. Typhimurium infection merit further exploration.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Athanasios Koutsos ◽  
Maria M. Ulaszewska ◽  
Kajetan Trošt ◽  
Jan Stanstrup ◽  
Letizia Mariani ◽  
...  

AbstractApples are a rich source of polyphenols and fiber. Proanthocyanidins (PAs), the largest polyphenolic class in apples, can reach the colon almost intact where they interact with the gut microbiota producing simple phenolic acids. These metabolites have the potential to modulate gut microbiota composition and activity and impact on host physiology. A randomized, controlled, crossover, dietary intervention study was performed to determine the broad effects of whole apple intake on fecal gut microbiota composition and activity. Forty heathy mildly hypercholesterolemic volunteers (23 women, 17 men), with a mean BMI (± SD) 25.3 ± 3.7 kg/m2 and age 51 ± 11 years, consumed 2 apples/day (Renetta Canada, rich in PAs), or a sugar matched control apple beverage, for 8 weeks separated by a 4-week washout period in a random order. Fecal and 24-h urine samples were collected before and after each treatment. The broad effects of apple intake on fecal gut microbiota composition were explored by the high throughput sequencing (HTS) of 16S rRNA gene lllumina MiSeq sequencing (V3-V4 region). Sequencing data analysis was performed using the Quantitative Insight Into Microbial Ecology (QIIME) open-source pipeline version 1.9.1. Specific bacterial groups were also enumerated using the quantitative Fluorescence In Situ Hybridization (FISH). Furthermore, the potential formation of microbial polyphenol metabolites, after apple intake, was explored in urine using Liquid Chromatography (LC) High-Resolution Mass Spectrometry (HRMS) metabolomics. Preliminary analysis showed no changes in gut microbiota abundances measured by Illumina MiSeq, after correction for multiple testing. Apple intake significantly decreased Enterobacteriaceae population (P = 0.04) compared to the control beverage, as determined with FISH. Twenty-four polyphenol microbial metabolites were identified in higher concentrations in the apple group (P < 0.05) compared to the control, including valerolactones, valeric and phenolic acids. In conclusion, preliminary data suggest that the daily intake of 2 Renetta Canada apples significantly decreased Enterobacteriaceae population, a family known for its pathogenic members, in healthy mildly hypercholesterolemic subjects. Moreover, several polyphenol microbial metabolites were identified, suggesting that microbial activity is crucial and a prerequisite for the absorption of apple polyphenols, producing active metabolites with potential health benefits.


2021 ◽  
Author(s):  
Daotong Li ◽  
Yu Feng ◽  
Meiling Tian ◽  
Junfu Ji ◽  
Xiaosong Hu ◽  
...  

Abstract Background Ulcerative colitis is a type of chronic inflammatory bowel disease closely associated with gut microbiota dysbiosis and intestinal homeostasis dysregulation. Barley leaf (BL) has a long history of use in Traditional Chinese Medicine with potential health-promoting effects on intestinal functions. However, its mechanism of action is not yet clear. Here, we explore the potential modulating roles of gut microbial metabolites of BL to protect against colitis and elucidate the underlying molecular mechanisms. Results Using 16S rRNA gene-based microbiota analysis, we first found that dietary supplementation of BL ameliorated dextran sulphate sodium (DSS)-induced gut microbiota dysbiosis. The mechanisms by which BL protected against DSS-induced colitis were resulted from improved intestinal mucosal barrier functions via the activation of peroxisome proliferator-activated receptor (PPAR)γ signaling. In addition, metabolomic profiling analysis showed that the gut microbiota modulated BL-induced metabolic reprograming in the colonic tissues particularly by the enhancement of glycolysis process. Notably, dietary BL supplementation resulted in enrichment of microbiota-derived purine metabolite inosine, which could activate PPARγ signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine reproduced the similar protective effects as BL to protect against DSS-induced colitis through improving adenosine 2A receptor (A2AR)/PPARγ-dependent mucosal barrier functions. Conclusions Overall, our findings suggest that the gut microbiota-inosine-A2AR/PPARγ axis plays an important role in the maintenance of intestinal homeostasis, which may represent a novel approach for colitis prevention via manipulation of the gut microbial purine metabolite.


1998 ◽  
Vol 38 (12) ◽  
pp. 73-76 ◽  
Author(s):  
B. S. W. Ho ◽  
T.-Y Tam

A total of 64 beach water samples with various bacteriological quality (Grades 1 to 4) were analysed for their bacteriological and parasitological contents (E coli and Giardia cysts respectively). Results indicated that Giardia cysts were detected in less than 10% of the Grade 1 beach water samples with E coli concentrations of &lt;24/100mL. For Grades 2, 3 & 4 beach water samples, Giardia cysts were found, respectively, in 85, 50 and 64% of the samples. Except for one beach water sample which had an unusually high concentration of Giardia cysts (23 cysts/L), they were generally present at moderate concentrations (&lt;10 cysts/L) in all other beach water samples. Despite moderate levels of Giardia cysts present in beach water of different grades, the potential health risk faced by swimmers bathing in local beach water needs to be carefully assessed as Giardia is known to have a low infectious dose.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


Sign in / Sign up

Export Citation Format

Share Document