scholarly journals Mn doped Prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Quan Tao ◽  
Genghan He ◽  
Sheng Ye ◽  
Di Zhang ◽  
Zhide Zhang ◽  
...  

Abstract Background Combining the multimodal imaging and synergistic treatment in one platform can enhance the therapeutic efficacy and diagnosis accuracy. Results In this contribution, innovative Mn-doped Prussian blue nanoparticles (MnPB NPs) were prepared via microemulsion method. MnPB NPs demonstrated excellent T1 and T2 weighted magnetic resonance imaging (MRI) enhancement in vitro and in vivo. The robust absorbance in the near infrared range of MnPB NPs provides high antitumor efficacy for photothermal therapy (PTT) and photoacoustics imaging property. Moreover, with the doping of Mn, MnPB NPs exhibited excellent Fenton reaction activity for chemodynamic therapy (CDT). The favorable trimodal imaging and Fenton reaction enhanced mild temperature photothermal therapy in vitro and in vivo were further confirmed that MnPB NPs have significant positive effectiveness for integration of diagnosis and treatment tumor. Conclusions Overall, this Mn doped Prussian blue nanoplatform with multimodal imaging and chemodynamic/mild temperature photothermal co-therapy provides a reliable tool for tumor treatment. Graphical Abstract

Nanomedicine ◽  
2020 ◽  
Vol 15 (27) ◽  
pp. 2655-2670
Author(s):  
Zhou Wang ◽  
Ying Long ◽  
Jialong Fan ◽  
Chang Xiao ◽  
Chunyi Tong ◽  
...  

Aim: To investigate the effects of the different morphological characteristics of Prussian blue nanoparticles (PB NPs) on their biocompatibility and biosafety. Materials & methods: PB NPs with different sizes, shapes and charges were synthesized and their biosafety and biocompatibility performance were systematically compared in vitro and in vivo. Results: Increased size and positive charge of PB NPs adversely affected cell viability, while improving their peroxidase activity and photothermal conversion efficiency. In vivo analysis demonstrated good biocompatibility of PB NPs, without retention in the organs, but increased size retarded their metabolism. Meanwhile, increased size and positive charge adversely affected hepatic and renal function. Conclusion: This comprehensive exploration of biosafety and biocompatibility provides strong evidences for the use of PB NPs as nanodrug carrier and/or imaging agent.


Nanoscale ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 6953-6958 ◽  
Author(s):  
Meng Zhao ◽  
Jianan Ding ◽  
Qiulian Mao ◽  
Yuqi Zhang ◽  
Yinjia Gao ◽  
...  

A novel NIR-II probe QT-RGD consisting of a NIR-II fluorophore and two tumor-targeting cyclic-RGD peptides was reported. In vitro and in vivo studies show that it could be successfully used for multimodal NIR-II/PA/SPECT imaging and photothermal therapy of malignant tumor.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Chen ◽  
Qiang Chu ◽  
Mengyang Li ◽  
Gaorong Han ◽  
Xiang Li

AbstractElectrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (Fe3O4@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. Fe3O4@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular H2O2 into ROS via Fenton reaction. In addition, Fe3+ ions released from Fe3O4@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.


2021 ◽  
Vol 22 (22) ◽  
pp. 12214
Author(s):  
Cheng-Liang Peng ◽  
Ying-Hsia Shih ◽  
Ping-Fang Chiang ◽  
Chun-Tang Chen ◽  
Ming-Cheng Chang

Cancer is one of the leading causes of death in the world. A cancer-targeted multifunctional probe labeled with the radionuclide has been developed to provide multi-modalities for NIR fluorescence and nuclear imaging (PET, SPECT), for photothermal therapy (PTT), and targeted radionuclide therapy of cancer. In this study, synthesis, characterization, in vitro, and in vivo biological evaluation of the cyanine-based probe (DOTA-NIR790) were demonstrated. The use of cyanine dyes for the selective accumulation of cancer cells were used to achieve the characteristics of tumor markers. Therefore, all kinds of organ tumors can be targeted for diagnosis and treatment. The DOTA-NIR790 labeled with lutetium-111 could detect original or metastatic tumors by using SPECT imaging and quantify tumor accumulation. The β-emission of 177Lu-DOTA-NIR790 can be used for targeted radionuclide therapy of tumors. The DOTA-NIR790 enabled imaging by NIR fluorescence and by nuclear imaging (SPECT) to monitor in real-time the tumor accumulation and the situation of cancer therapy, and to guide the surgery or the photothermal therapy of the tumor. The radionuclide-labeled heptamethine cyanine based probe (DOTA-NIR790) offers multifunctional modalities for imaging and therapies of cancer.


2018 ◽  
Vol 7 (22) ◽  
pp. 1800830 ◽  
Author(s):  
Li Song ◽  
Xinghua Dong ◽  
Shuang Zhu ◽  
Chunfang Zhang ◽  
Wenyan Yin ◽  
...  

2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


Sign in / Sign up

Export Citation Format

Share Document