scholarly journals Development of prognosis model for colon cancer based on autophagy-related genes

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. Methods Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. Results Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. Conclusion The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.

2020 ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background: Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied.Methods: Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazards models were used to investigate the association between ARG expression profiles and patient prognosis.Results: 20 ARGs were significantly associated with overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p<0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 3- and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians.Conclusion: The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2020 ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background: Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied.Methods: Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazards models were used to investigate the association between ARG expression profiles and patient prognosis.Results: 20 ARGs were significantly associated with overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3- and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians.Conclusion: The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2020 ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background: Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied.Methods: Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and AGRs related to overall patient survival were identified. Cox proportional-hazards models were used to investigate the association between ARG expression profiles and patient prognosis.Results: 20 ARGs were significantly associated with overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p<0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 3- and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians.Conclusion: The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2022 ◽  
Author(s):  
Thongher Lia ◽  
Yanxiang Shao ◽  
Parbatraj Regmi ◽  
Xiang Li

Bladder cancer is one of the highly heterogeneous disorders accompanied by a poor prognosis. This study aimed to construct a model based on pyroptosis‑related lncRNA to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis‑related lncRNAs were identified by utilizing a co-expression network of Pyroptosis‑related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, 8 pyroptosis-related lncRNA markers were established using Lasso regression and multivariate Cox regression analysis. Patients were separated into high and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (p &lt; 0.001), and In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS ( HR&gt;1, P&lt;0.01). The area under the curve (AUC) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739 respectively. In conclusion, these 8 pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2020 ◽  
Author(s):  
Xiaohong - Liu ◽  
Qian - Xu ◽  
Zi-Jing - Li ◽  
Bin - Xiong

Abstract BackgroundMetabolic reprogramming is an important hallmark in the development of malignancies. Numerous metabolic genes have been demonstrated to participate in the progression of hepatocellular carcinoma (HCC). However, the prognostic significance of the metabolic genes in HCC remains elusive. MethodsWe downloaded the gene expression profiles and clinical information from the GEO, TCGA and ICGC databases. The differently expressed metabolic genes were identified by using Limma R package. Univariate Cox regression analysis and LASSO (Least absolute shrinkage and selection operator) Cox regression analysis were utilized to uncover the prognostic significance of metabolic genes. A metabolism-related prognostic model was constructed in TCGA cohort and validated in ICGC cohort. Furthermore, we constructed a nomogram to improve the accuracy of the prognostic model by using the multivariate Cox regression analysis.ResultsThe high-risk score predicted poor prognosis for HCC patients in the TCGA cohort, as confirmed in the ICGC cohort (P < 0.001). And in the multivariate Cox regression analysis, we observed that risk score could act as an independent prognostic factor for the TCGA cohort (HR (hazard ratio) 3.635, 95% CI (confidence interval)2.382-5.549) and the ICGC cohort (HR1.905, 95%CI 1.328-2.731). In addition, we constructed a nomogram for clinical use, which suggested a better prognostic model than risk score.ConclusionsOur study identified several metabolic genes with important prognostic value for HCC. These metabolic genes can influence the progression of HCC by regulating tumor biology and can also provide metabolic targets for the precise treatment of HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fen Liu ◽  
Zongcheng Yang ◽  
Lixin Zheng ◽  
Wei Shao ◽  
Xiujie Cui ◽  
...  

BackgroundGastric cancer is a common gastrointestinal malignancy. Since it is often diagnosed in the advanced stage, its mortality rate is high. Traditional therapies (such as continuous chemotherapy) are not satisfactory for advanced gastric cancer, but immunotherapy has shown great therapeutic potential. Gastric cancer has high molecular and phenotypic heterogeneity. New strategies for accurate prognostic evaluation and patient selection for immunotherapy are urgently needed.MethodsWeighted gene coexpression network analysis (WGCNA) was used to identify hub genes related to gastric cancer progression. Based on the hub genes, the samples were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between the subtypes, a gastric cancer risk model was constructed through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis. The differences in prognosis, clinical features, tumor microenvironment (TME) components and immune characteristics were compared between subtypes and risk groups, and the connectivity map (CMap) database was applied to identify potential treatments for high-risk patients.ResultsWGCNA and screening revealed nine hub genes closely related to gastric cancer progression. Unsupervised clustering according to hub gene expression grouped gastric cancer patients into two subtypes related to disease progression, and these patients showed significant differences in prognoses, TME immune and stromal scores, and suppressive immune checkpoint expression. Based on the different expression patterns between the subtypes, we constructed a gastric cancer risk model and divided patients into a high-risk group and a low-risk group based on the risk score. High-risk patients had a poorer prognosis, higher TME immune/stromal scores, higher inhibitory immune checkpoint expression, and more immune characteristics suitable for immunotherapy. Multivariate Cox regression analysis including the age, stage and risk score indicated that the risk score can be used as an independent prognostic factor for gastric cancer. On the basis of the risk score, we constructed a nomogram that relatively accurately predicts gastric cancer patient prognoses and screened potential drugs for high-risk patients.ConclusionsOur results suggest that the 7-gene signature related to tumor progression could predict the clinical prognosis and tumor immune characteristics of gastric cancer.


2021 ◽  
Vol 16 ◽  
Author(s):  
Dongqing Su ◽  
Qianzi Lu ◽  
Yi Pan ◽  
Yao Yu ◽  
Shiyuan Wang ◽  
...  

Background: Breast cancer has plagued women for many years and caused many deaths around the world. Method: In this study, based on the weighted correlation network analysis, univariate Cox regression analysis and least absolute shrinkage and selection operator, 12 immune-related genes were selected to construct the risk score for breast cancer patients. The multivariable Cox regression analysis, gene set enrichment analysis and nomogram were also conducted in this study. Results: Good results were obtained in the survival analysis, enrichment analysis, multivariable Cox regression analysis and immune-related feature analysis. When the risk score model was applied in 22 breast cancer cohorts, the univariate Cox regression analysis demonstrated that the risk score model was significantly associated with overall survival in most of the breast cancer cohorts. Conclusion: Based on these results, we could conclude that the proposed risk score model may be a promising method, and may improve the treatment stratification of breast cancer patients in the future work.


2021 ◽  
Author(s):  
Hongxin Yang ◽  
Chaoyong Shen ◽  
Xiaonan Yin ◽  
Zhaolun Cai ◽  
Qian Wang ◽  
...  

Abstract Objective: To investigate the clinicopathological features, clinical efficacy on 101 cases of rectal gastrointestinal stromal tumors (GISTs), and the significance of Imatinib Mesylate (IM) neoadjuvant therapy.Methods: The clinicopathological features, treatment methods, peri-operative data, and prognosis of the patients were summarized and analyzed on 101 patients with rectal GISTs, who received treatment in the Gastrointestinal Department of West China Hospital of SichuanUniversity and the Affiliated Hospital of Guizhou Medical University from August 2002 toNovember 2020 in China. Results: A total of 101 patients, including 64 males and 37 females, were aged from 22 to 79 years (55.4±12.2 years). Among 70 patients with direct surgery, which included 8 very low risk cases, 10 low risk cases, 7 intermediate risk cases, and 45 high risk cases. Cox regression analysis showed that post-operative IM adjuvant treatment improved disease-free survival (DFS) and overall survival (OS) of 52 intermediate and high risk patients. Among the 31 patients who received neoadjuvant therapy, the objective response rate (ORR) was 83.9% (26/31), and the disease control rate (DCR) reached 96.8% (30/31). Diameter subgroup analysis: (1) Among the 36 patients with a diameter ≤ 5 cm, two patients received IM neoadjuvant therapy, while 34 patients received direct surgery. Both univariate and Cox regression analysis did not find that neoadjuvant therapy affects DFS and OS. (2) Among the 65 patients of diameter >5 cm, 29 received IM neoadjuvant therapy and 36 received direct surgery. Patients who underwent neoadjuvant therapy had less blood loss (P=0.022) , shorter post-operative hospital stay (P=0.001), increased anal preservation proportion (93.1% VS72.2% , P=0.031), decreased enterostomy proportion (10.3% VS 33.3%, P=0.037) than those who underwent direct surgery. Cox regression analysis suggested that neoadjuvant therapy and post-operative IM adjuvant therapy improved DFS. Conclusion: Rectal GISTs is relatively rare and is a highly malignant tumor, post-operative oral IM therapy can improve DFS and OS of intermediate and high risk patients. In patients with rectal GISTs with diameter > 5 cm, IM neoadjuvant therapy can improve the anal preservation proportion , preserve the structure and function of the organs, reduce enterostomy proportion, and improve prognosis.


2020 ◽  
Author(s):  
Wei Ma ◽  
Qing Cao ◽  
Wandong She

Abstract Background: The mechanism of transition from low-grade to high-grade head and neck carcinomas (HNC) still remains unclear. The aim of this study was to explore the genes expression profiles that drive malignancy from low to high-grade HNC, as well as analyze their correlations with the survival.Methods: Gene expressions and clinical data of HNC were downloaded from the Gene Expression Omnibus (GEO) repository. The significantly differential genes (SDGs) between low and high-grade HNC were screened by GEO2R and R software. Bioinformatics functions of SDGs were investigated by the enrichment analyses. Univariate and multivariate cox regressions were performed to identify prognostic SDGs of progression free survival (PFS) and disease specific survival (DSS). ROC curve was established to evaluate the ability to predict the prognosis. Then, the correlations between SDGs and clinical features were evaluated. The genes were experimentally validated by RT-PCR in clinical specimens’ tissues at last.Results: Thirty-five SDGs were identified in 47 low-grade and 30 high-grade HNC samples. Enrichment analysis showed these SDGs were mainly enriched in the DNA repair pathway and the regulation of I−kappaB kinase/NF−kappaB signaling pathway. Cox regression analyses showed that CXCL14, SLC44A1 and UBD were significantly associated with DSS, and PPP2R2C and SLC44A1 were associated with PFS. Patients at a high-risk or low-risk for prognosis were established based on genes signatures. High-risk patients had significantly shorter DSS and PFS than low-risk patients (P=0.033, 0.010 respectively). Multivariate cox regression showed HPV (P=0.033), lymph node status (P=0.032) and residual status (P<0.044) were independent risk factors for PFS. ROC curves showed the risk score had better efficacy to predict survival both for DSS and PFS (AUC=0.858, 0.901 respectively). In addition, we found UBD, PPP2R2C and risk score were significantly associated with HPV status (all P<0.05). The experiment results showed CXCL14 and SLC44A1 were significantly overexpressed in the HNC grade I/II tissues and the UBD were overexpressed in the HNC grade III/IV tissues.Conclusions: Our results suggested that SDGs had different expression profiles between the low-grade and high-grade HNC, and these genes may serve as prognostic biomarker to predict the survival.


Sign in / Sign up

Export Citation Format

Share Document