scholarly journals Development of a radiomics model to diagnose pheochromocytoma preoperatively: a multicenter study with prospective validation

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianqiu Kong ◽  
Junjiong Zheng ◽  
Jieying Wu ◽  
Shaoxu Wu ◽  
Jinhua Cai ◽  
...  

Abstract Background Preoperative diagnosis of pheochromocytoma (PHEO) accurately impacts preoperative preparation and surgical outcome in PHEO patients. Highly reliable model to diagnose PHEO is lacking. We aimed to develop a magnetic resonance imaging (MRI)-based radiomic-clinical model to distinguish PHEO from adrenal lesions. Methods In total, 305 patients with 309 adrenal lesions were included and divided into different sets. The least absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction, feature selection, and radiomics signature building. In addition, a nomogram incorporating the obtained radiomics signature and selected clinical predictors was developed by using multivariable logistic regression analysis. The performance of the radiomic-clinical model was assessed with respect to its discrimination, calibration, and clinical usefulness. Results Seven radiomics features were selected among the 1301 features obtained as they could differentiate PHEOs from other adrenal lesions in the training (area under the curve [AUC], 0.887), internal validation (AUC, 0.880), and external validation cohorts (AUC, 0.807). Predictors contained in the individualized prediction nomogram included the radiomics signature and symptom number (symptoms include headache, palpitation, and diaphoresis). The training set yielded an AUC of 0.893 for the nomogram, which was confirmed in the internal and external validation sets with AUCs of 0.906 and 0.844, respectively. Decision curve analyses indicated the nomogram was clinically useful. In addition, 25 patients with 25 lesions were recruited for prospective validation, which yielded an AUC of 0.917 for the nomogram. Conclusion We propose a radiomic-based nomogram incorporating clinically useful signatures as an easy-to-use, predictive and individualized tool for PHEO diagnosis.

2021 ◽  
Vol 11 ◽  
Author(s):  
Shuxian Niu ◽  
Xiaoyu Wang ◽  
Nannan Zhao ◽  
Guanyu Liu ◽  
Yangyang Kan ◽  
...  

ObjectivesThis study aims to evaluate digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW) MRI, individually and combined, for the values in the diagnosis of breast cancer, and propose a visualized clinical-radiomics nomogram for potential clinical uses.MethodsA total of 120 patients were enrolled between September 2017 and July 2018, all underwent preoperative DM, DBT, DCE, and DWI scans. Radiomics features were extracted and selected using the least absolute shrinkage and selection operator (LASSO) regression. A radiomics nomogram was constructed integrating the radiomics signature and important clinical predictors, and assessed with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).ResultsThe radiomics signature derived from DBT plus DM generated a lower area under the ROC curve (AUC) and sensitivity, but a higher specificity compared with that from DCE plus DWI. The nomogram integrating the combined radiomics signature, age, and menstruation status achieved the best diagnostic performance in the training (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.975 vs. 0.964 vs. 0.782) and validation (AUCs, nomogram vs. combined radiomics signature vs. clinical model, 0.983 vs. 0.978 vs. 0.680) cohorts. DCA confirmed the potential clinical usefulness of the nomogram.ConclusionsThe DBT plus DM provided a lower AUC and sensitivity, but a higher specificity than DCE plus DWI for detecting breast cancer. The proposed clinical-radiomics nomogram has diagnostic advantages over each modality, and can be considered as an efficient tool for breast cancer screening.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qian Zhu ◽  
Xiaoqing He ◽  
Ling Jiang ◽  
Guiling Liang ◽  
Chenfeng Zhu ◽  
...  

Abstract This study aimed to develop and validate a model for the preoperative prediction of the effectiveness of hysteroscopic resection of a uterine cesarean niche in patients with postmenstrual spotting. The predictive model was developed in a primary prospective cohort consisting of 208 patients with niche treated by hysteroscopic resection. Multivariable logistic regression analysis was performed to develop the predictive model, which incorporated preoperative menstrual characteristics and magnetic resonance imaging (MRI) findings. Surgical efficacy was defined as a decrease in postmenstrual spotting duration of at least 3 days at the 3-month follow-up compared with baseline. The predictive model was presented with a nomogram, and the performance was assessed with respect to its calibration, discrimination, and clinical use. Internal validation was performed using tenfold cross-validation. The predictive factors in the final model were as follows: preoperative menstrual duration, thickness of the residual myometrium (TRM), length, TRM/thickness of the adjacent myometrium ratio, angle γ, area, and presence of a lateral branch of the niche. The model showed good performance in predicting the effectiveness of hysteroscopic niche resection. Incorporating the preoperative duration of the menstrual period and MRI findings of the niche into an easy-to-use nomogram facilitates the individualized prediction of the effectiveness of a hysteroscopic niche resection by 26 Fr resectoscope, but multicenter prospective studies are needed to validate it.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15596-e15596
Author(s):  
Xiao-Hang Wang ◽  
Liu-Hua Long ◽  
Yong Cui ◽  
Angela Y Jia ◽  
Xiang-Gao Zhu ◽  
...  

e15596 Background: Recurrence is the major cause of mortality in resected hepatocellular carcinoma (HCC) patients. However, without a standard approach to evaluate prognosis, it is difficult to select potential candidates for additional therapy. We aim to develop and evaluate a magnetic resonance imaging (MRI)-based radiomics model to predict 5-year survival status of HCC patients in the preoperative setting. Methods: A total of 201 HCC patients who were followed up for at least 5 years (unless death occurred) after curative hepatectomy were enrolled in this retrospective multicenter study. 3144 radiomics features were extracted from four conventional sequences of preoperative MRI (T1WI, T2WI, DWI and dynamic contrast-enhanced MRI). The random forest method was used for feature selection and radiomics signature building. 5-fold cross validation was used for robust estimation. A radiomics model incorporating the radiomics signature and clinical risk factors was developed. The model performance was evaluated by its discrimination and calibration. Results: Patients were divided into survivor (n = 97) and non-survivor (n = 104) groups based on survival status at 5 years from surgery. The 30 most survival-related radiomics features were selected to develop the radiomics signature. The preoperative alpha-fetoprotein level was integrated into the model as an independent clinical risk factor in multivariable logistic regression analysis (OR = 3.764; 95% CI 1.997-7.096). The radiomics model demonstrated good calibration and satisfactory discrimination, with the mean area under the curve of 0.9340 (95% CI 0.9222-0.9458) in training set and 0.7383 (95% CI 0.6914-0.7852) in validation set. Conclusions: The MRI-based radiomics model represents a valid method to predict 5-year survival status in HCC patients in the preoperative setting, and may be used to guide neoadjuvant or adjuvant treatment decisions in high-risk patients.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lina Zhao ◽  
Yunying Wang ◽  
Zengzheng Ge ◽  
Huadong Zhu ◽  
Yi Li

Objective: The study aims to develop a mechanical learning model as a predictive model for predicting the appearance of sepsis-associated encephalopathy (SAE).Materials and Methods: The prediction model was developed in a primary cohort of 2,028 sepsis patients from June 2001 to October 2012, retrieved from the Medical Information Mart for Intensive Care (MIMIC III) database. Least absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction and feature selection. The model was developed using multivariable logistic regression analysis. The performance of the nomogram has been evaluated in terms of calibration, discrimination, and clinical utility.Results: There were nine particular features in septic patients that were significantly associated with SAE. Predictors of individualized prediction nomograms included age, rapid sequential evaluation of organ failure (qSOFA), and drugs including carbapenem antibiotics, quinolone antibiotics, steroids, midazolam, H2-antagonist, diphenhydramine hydrochloride, and heparin sodium injection. The area under the curve (AUC) was 0.743, indicating good discrimination. The prediction model showed calibration curves with minor deviations from the ideal predictions. Decision curve analysis (DCA) suggested that the nomogram was clinically useful.Conclusion: We propose a nomogram for the individualized prediction of SAE with satisfactory performance and clinical utility, which could aid the clinician in the early detection and management of SAE.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1004.1-1004
Author(s):  
D. Xu ◽  
R. Mu

Background:Scleroderma renal crisis (SRC) is a life-threatening syndrome. The early identification of patients at risk is essential for timely treatment to improve the outcome[1].Objectives:We aimed to provide a personalized tool to predict risk of SRC in systemic sclerosis (SSc).Methods:We tried to set up a SRC prediction model based on the PKUPH-SSc cohort of 302 SSc patients. The least absolute shrinkage and selection operator (Lasso) regression was used to optimize disease features. Multivariable logistic regression analysis was applied to build a SRC prediction model incorporating the features of SSc selected in the Lasso regression. Then, a multi-predictor nomogram combining clinical characteristics was constructed and evaluated by discrimination and calibration.Results:A multi-predictor nomogram for evaluating the risk of SRC was successfully developed. In the nomogram, four easily available predictors were contained including disease duration <2 years, cardiac involvement, anemia and corticosteroid >15mg/d exposure. The nomogram displayed good discrimination with an area under the curve (AUC) of 0.843 (95% CI: 0.797-0.882) and good calibration.Conclusion:The multi-predictor nomogram for SRC could be reliably and conveniently used to predict the individual risk of SRC in SSc patients, and be a step towards more personalized medicine.References:[1]Woodworth TG, Suliman YA, Li W, Furst DE, Clements P (2016) Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat Rev Nephrol 12 (11):678-91.Disclosure of Interests:None declared


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuyan Chen ◽  
Zelong Liu ◽  
Yunxian Mo ◽  
Bin Li ◽  
Qian Zhou ◽  
...  

Objectives: Preoperative prediction of post-hepatectomy liver failure (PHLF) in patients with hepatocellular carcinoma (HCC) is significant for developing appropriate treatment strategies. We aimed to establish a radiomics-based clinical model for preoperative prediction of PHLF in HCC patients using gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI).Methods: A total of 144 HCC patients from two medical centers were included, with 111 patients as the training cohort and 33 patients as the test cohort, respectively. Radiomics features and clinical variables were selected to construct a radiomics model and a clinical model, respectively. A combined logistic regression model, the liver failure (LF) model that incorporated the developed radiomics signature and clinical risk factors was then constructed. The performance of these models was evaluated and compared by plotting the receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC) with 95% confidence interval (CI).Results: The radiomics model showed a higher AUC than the clinical model in the training cohort and the test cohort for predicting PHLF in HCC patients. Moreover, the LF model had the highest AUCs in both cohorts [0.956 (95% CI: 0.955–0.962) and 0.844 (95% CI: 0.833–0.886), respectively], compared with the radiomics model and the clinical model.Conclusions: We evaluated quantitative radiomics features from MRI images and presented an externally validated radiomics-based clinical model, the LF model for the prediction of PHLF in HCC patients, which could assist clinicians in making treatment strategies before surgery.


2019 ◽  
Vol 31 (5) ◽  
pp. 665-673 ◽  
Author(s):  
Maud Menard ◽  
Alexis Lecoindre ◽  
Jean-Luc Cadoré ◽  
Michèle Chevallier ◽  
Aurélie Pagnon ◽  
...  

Accurate staging of hepatic fibrosis (HF) is important for treatment and prognosis of canine chronic hepatitis. HF scores are used in human medicine to indirectly stage and monitor HF, decreasing the need for liver biopsy. We developed a canine HF score to screen for moderate or greater HF. We included 96 dogs in our study, including 5 healthy dogs. A liver biopsy for histologic examination and a biochemistry profile were performed on all dogs. The dogs were randomly split into a training set of 58 dogs and a validation set of 38 dogs. A HF score that included alanine aminotransferase, alkaline phosphatase, total bilirubin, potassium, and gamma-glutamyl transferase was developed in the training set. Model performance was confirmed using the internal validation set, and was similar to the performance in the training set. The overall sensitivity and specificity for the study group were 80% and 70% respectively, with an area under the curve of 0.80 (0.71–0.90). This HF score could be used for indirect diagnosis of canine HF when biochemistry panels are performed on the Konelab 30i (Thermo Scientific), using reagents as in our study. External validation is required to determine if the score is sufficiently robust to utilize biochemical results measured in other laboratories with different instruments and methodologies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Zhou ◽  
Jia Zhou ◽  
Zuoli Sun ◽  
Lei Feng ◽  
Xuequan Zhu ◽  
...  

Objective: The aim of our study was to identify immune- and inflammation-related factors with clinical utility to predict the clinical efficacy of treatment for depression.Study Design: This was a follow-up study. Participants who met the entry criteria were administered with escitalopram (5–10 mg/day) as an initial treatment. Self-evaluation and observer valuations were arranged at the end of weeks 0, 4, 8, and 12, with blood samples collected at baseline and during weeks 2 and 12. Multivariable logistic regression analysis was then carried out by incorporating three cytokines selected by the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. Internal validation was estimated using the bootstrap method with 1,000 repetitions.Results: A total of 85 patients with Major Depressive Disorder (MDD), including 62 responders and 23 non-responders, were analyzed. Monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and lipocalin-2 were selected by the LASSO regression model. The area under the curve (AUC) from the logistic model was 0.811 and was confirmed as 0.7887 following bootstrapping validation.Conclusions: We established and validated a good prediction model to facilitate the individualized prediction of escitalopram treatment for MDD and created a personalized approach to treatment for patients with depression.


2018 ◽  
Vol 5 (1) ◽  
pp. e000240 ◽  
Author(s):  
Andrew C Kidd ◽  
Michael McGettrick ◽  
Selina Tsim ◽  
Daniel L Halligan ◽  
Max Bylesjo ◽  
...  

IntroductionAccurate prognostication is difficult in malignant pleural mesothelioma (MPM). We developed a set of robust computational models to quantify the prognostic value of routinely available clinical data, which form the basis of published MPM prognostic models.MethodsData regarding 269 patients with MPM were allocated to balanced training (n=169) and validation sets (n=100). Prognostic signatures (minimal length best performing multivariate trained models) were generated by least absolute shrinkage and selection operator regression for overall survival (OS), OS <6 months and OS <12 months. OS prediction was quantified using Somers DXY statistic, which varies from 0 to 1, with increasing concordance between observed and predicted outcomes. 6-month survival and 12-month survival were described by area under the curve (AUC) scores.ResultsMedian OS was 270 (IQR 140–450) days. The primary OS model assigned high weights to four predictors: age, performance status, white cell count and serum albumin, and after cross-validation performed significantly better than would be expected by chance (mean DXY0.332 (±0.019)). However, validation set DXY was only 0.221 (0.0935–0.346), equating to a 22% improvement in survival prediction than would be expected by chance. The 6-month and 12-month OS signatures included the same four predictors, in addition to epithelioid histology plus platelets and epithelioid histology plus C-reactive protein (mean AUC 0.758 (±0.022) and 0.737 (±0.012), respectively). The <6-month OS model demonstrated 74% sensitivity and 68% specificity. The <12-month OS model demonstrated 63% sensitivity and 79% specificity. Model content and performance were generally comparable with previous studies.ConclusionsThe prognostic value of the basic clinical information contained in these, and previously published models, is fundamentally of limited value in accurately predicting MPM prognosis. The methods described are suitable for expansion using emerging predictors, including tumour genomics and volumetric staging.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yanghua Fan ◽  
Panpan Liu ◽  
Yiping Li ◽  
Feng Liu ◽  
Yu He ◽  
...  

BackgroundAccurate preoperative differentiation of intracranial hemangiopericytoma and angiomatous meningioma can greatly assist operation plan making and prognosis prediction. In this study, a clini-radiomic model combining radiomic and clinical features was used to distinguish intracranial hemangiopericytoma and hemangioma meningioma preoperatively.MethodsA total of 147 patients with intracranial hemangiopericytoma and 73 patients with angiomatous meningioma from the Tiantan Hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to construct a clinical model, then a clini-radiomic model incorporating the fusion radiomic model and clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated.ResultsSix significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.900 and 0.900 in the training and validation sets, respectively. A clini-radiomic model that incorporated the radiomic model and clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.920 in the training set and 0.910 in the validation set. The analysis of the decision curve showed that the fusion radiomic model and clini-radiomic model were clinically useful.ConclusionsOur clini-radiomic model showed great performance and high sensitivity in the differential diagnosis of intracranial hemangiopericytoma and angiomatous meningioma, and could contribute to non-invasive development of individualized diagnosis and treatment for these patients.


Sign in / Sign up

Export Citation Format

Share Document