scholarly journals Virus-induced gene silencing (VIGS) in Cannabis sativa L.

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Julia Schachtsiek ◽  
Tajammul Hussain ◽  
Khadija Azzouhri ◽  
Oliver Kayser ◽  
Felix Stehle

Abstract Background The raised demand of cannabis as a medicinal plant in recent years led to an increased interest in understanding the biosynthetic routes of cannabis metabolites. Since there is no established protocol to generate stable gene knockouts in cannabis, the use of a virus-induced gene silencing (VIGS) method, resulting in a gene knockdown, to study gene functions is desirable. Results For this, a computational approach was employed to analyze the Cannabis sativa L. transcriptomic and genomic resources. Reporter genes expected to give rise to easily scorable phenotypes upon silencing, i.e. the phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI), were identified in C. sativa. Subsequently, the targets of specific small interfering RNAs (siRNAs) and silencing fragments were predicted and tested in a post-transcriptional gene silencing (PTGS) approach. Here we show for the first time a gene knockdown in C. sativa using the Cotton leaf crumple virus (CLCrV) in a silencing vector system. Plants transiently transformed with the Agrobacterium tumefaciens strain AGL1, carrying the VIGS-vectors, showed the desired phenotypes, spotted bleaching of the leaves. The successful knockdown of the genes was additionally validated by quantitative PCR resulting in reduced expression of transcripts from 70 to 73% for ChlI and PDS, respectively. This is accompanied with the reduction of the chlorophyll a and carotenoid content, respectively. In summary, the data clearly demonstrate the potential for functional gene studies in cannabis using the CLCrV-based vector system. Conclusions The applied VIGS-method can be used for reverse genetic studies in C. sativa to identify unknown gene functions. This will gain deeper inside into unknown biosynthetic routes and will help to close the gap between available genomic data and biochemical information of this important medicinal plant.

Uirusu ◽  
2010 ◽  
Vol 60 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Noriko YAMAGISHI ◽  
Nobuyuki YOSHIKAWA

2006 ◽  
Vol 33 (4) ◽  
pp. 347 ◽  
Author(s):  
Changchun Wang ◽  
Xinzhong Cai ◽  
Xuemin Wang ◽  
Zhong Zheng

Arabidopsis thaliana (L.) Heynh. is a model plant species in which to study plant gene functions. Recently developed virus-induced gene silencing (VIGS) offers a rapid and high-throughput technique platform for gene function analysis. In this paper we report optimisation of tobacco rattle virus (TRV)-induced gene silencing in Arabidopsis. The parameters potentially affecting the efficiency of VIGS in Arabidopsis were investigated. These included the concentration and pre-incubation of Agrobacterium inocula (agro-inocula), the concentration of acetosyringone included in agro-inocula, the Agrobacterium inoculation (agro-inoculation) method, the ecotypes and the growth stages of Arabidopsis plants for agro-inoculation, and the growth temperature of agro-inoculated plants. The optimised VIGS procedure involves preparing the agro-inocula with OD600 of 2.0, pre-incubating for 2 h in infiltration buffer containing 200 μm acetosyringone, agro-inoculating by vacuum infiltration, and growth of agro-inoculated plants at 22 −24°C. Following this procedure consistent and highly efficient VIGS was achieved for the genes encoding phytoene desaturase (PDS) and actin in Arabidopsis. The silencing phenotype lasts for at least 6 weeks, and is applicable in at least seven ecotypes, including Col-0, Cvi-0, Sd, Nd-1, Ws-0, Bay-0 and Ler. TRV-induced VIGS was expressed not only in leaves, but also in stems, inflorescences and siliques. However, VIGS was not transmissible through seed to the subsequent generation. The optimised procedure of the TRV-induced gene silencing should facilitate high-throughput functional analysis of genes in Arabidopsis.


Author(s):  
Verónica Aragonés ◽  
Flavio Aliaga ◽  
Fabio Pasin ◽  
José-Antonio Daròs

Genome editing and gene expression engineering using CRISPR-Cas systems in plants usually rely on labor-intensive tissue culture approaches to generate stably transformed plants that express the components of the reaction. Viral vectors have demonstrated to be a quick and effective alternative to express multiple guide RNAs, DNA templates for homologous recombination, and even Cas nucleases. Here we have developed an improved vector system based on tobacco rattle virus (TRV) to simplify logistics in genome editing and gene silencing approaches. The new system consists in a single Agrobacterium tumefaciens clone co-transformed with two compatible mini binary vectors from which TRV RNA1 and an engineered version of TRV RNA2 are expressed. Sequences of recombinant proteins, gene fragments for virus-induced gene silencing (VIGS) or guide RNAs can be easily inserted by one-step digestion-ligation and homology-based cloning methods in the RNA2 plasmid to produce vectors with a size substantially smaller than usual. Using this new one-Agrobacterium TRV mini vector system, we show robust VIGS of an endogenous host gene after infiltration of bacterial suspensions at low optical densities, and efficient production of recombinant proteins in Nicotiana benthamiana. Most importantly, we also show highly efficient heritable genome editing in more than half of the seedling originating from inoculated N. benthamiana plants that express Cas9.


2002 ◽  
Vol 15 (8) ◽  
pp. 799-807 ◽  
Author(s):  
V. Brault ◽  
S. Pfeffer ◽  
M. Erdinger ◽  
J. Mutterer ◽  
V. Ziegler-Graff

Transgenic Nicotiana benthamiana expressing the minor coat protein P74 of the phloem-limited Beet western yellows virus (BWYV) exhibited an unusual spatial pattern of post-transcriptional gene silencing (PTGS) when infected with BWYV or related viruses. Following infection, transgenic P74 and its mRNA accumulated to only low levels, 21 to 23 nucleotide RNAs homologous to the transgene appeared, and the transgene DNA underwent methylation. The infecting viral RNA, however, was not subject to significant silencing but multiplied readily and produced P74 in the phloem tissues, although the P74 encoded by the transgene disappeared from the phloem as well as the nonvascular tissues.


Plant Methods ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 27 ◽  
Author(s):  
John Tuttle ◽  
Candace H Haigler ◽  
Dominique Robertson

2010 ◽  
Vol 23 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Hui-Wen Wu ◽  
Shih-Shun Lin ◽  
Kuan-Chun Chen ◽  
Shyi-Dong Yeh ◽  
Nam-Hai Chua

Helper component-proteinase (HC-Pro), the gene-silencing suppressor of Potyvirus spp., interferes with microRNA (miRNA) and short-interfering RNA (siRNA) pathways. Our previous studies showed that three mutations of highly conserved amino acids of HC-Pro, R180I (mutation A), F205L (B), and E396N (C), of Zucchini yellow mosaic virus (ZYMV) affect symptom severity and viral pathogenicity. The mutant ZYMV GAC (ZGAC) with double mutations, R180I/E396N, induces transient leaf mottling in host plants followed by recovery. This mutant confers complete cross protection against subsequent infection by the parental ZYMV (ZG) strain. Here, we sought to obtain molecular evidence on the roles of the three highly conserved amino acids of HC-Pro in miRNA and siRNA pathways using transgenic Arabidopsis plants expressing comparable levels of wild-type and mutant HC-Pro proteins. We demonstrated that amino acid residues 180, 205, and 396 of HC-Pro are critical for suppression of miRNA, trans-acting siRNA (ta-siRNA), and virus-induced gene silencing (VIGS) pathways but not for sense-post transcriptional gene silencing (s-PTGS). Because the HC-Pro double mutant (R180I/E396N) does not interfere with miRNA and ta-siRNA pathways, the ZGAC mutant virus elicits only attenuated symptoms. Furthermore, the recovery seen on ZGAC-infected plants likely results from the weak VIGS suppression by the HC-Pro double AC mutant. Thus, through manipulating these three conserved amino acids on HC-Pro, symptom severity of diseases caused by Potyvirus spp. can be modulated to generate useful cross protectants for field application. Although some of our mutated HC-Pro proteins do not interfere with miRNA and ta-siRNA pathways, they still retain the ability to suppress s-PTGS.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jamilur Rahman ◽  
Ian T. Baldwin ◽  
Klaus Gase

Abstract Background Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS), a widely used functional genomics tool, requires growth temperatures typically lower than those of the plant’s native environment. Enabling VIGS under native conditions in the field according to applicable safety regulations could be a revolutionary advance for ecological research. Results Here, we report the development of an enhanced thermal tolerant VIGS vector system based on a TRV California isolate. cDNA clones representing the whole viral genome were sequenced and used to construct separate binary plant transformation vectors for functional elements of RNA1 (6765 nt) and RNA2 (3682 nt). VIGS of target genes was induced by transient transformation of the host plant with both vectors or by treating the host plant with sap from already VIGS induced plants. In Nicotiana attenuata the silencing efficiency of the PDS (phytoene desaturase) gene was 90% at 28 °C and 78% at 30 °C. Silencing at these temperatures was more prominent and durable than silencing induced by the widely used TRV PpK20-based pBINTRA6/pTV00 system, but was associated with a viral phenotype. Differences in the suppressor protein and RNA dependent RNA polymerase sequences between the TRV California isolate and PpK20 may be the reason for their different thermal tolerance. Conclusions The new TRV California-based VIGS vectors induce gene silencing in Nicotiana attenuata at higher temperatures than the existing pBINTRA6/pTV00 vector system, but cause greater growth defects. The new vector system opens up an avenue to study genes functions in planta under field conditions.


Sign in / Sign up

Export Citation Format

Share Document