scholarly journals Knockdown of Circ_SLC39A8 protects against the progression of osteoarthritis by regulating miR-591/IRAK3 axis

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Liu ◽  
Ping Cheng ◽  
Jianjun Liang ◽  
Xiaoming Zhao ◽  
Wei Du

Abstract Background Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of various diseases, including osteoarthritis (OA). However, the effects and molecular mechanism of circ_0128846 in OA have not been reported. Methods The expression levels of circ_0128846, microRNA-127-5p (miR-127-5p), and nicotinamide phosphoribosyltransferase (NAMPT) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was examined by flow cytometry and western blot assay. Inflammatory response and cartilage extracellular matrix (ECM) degradation were evaluated by western blot assay. The relationship between miR-127-5p and circ_0128846 or NAMPT was predicted by bioinformatics tools and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Results Circ_0128846 and NAMPT were upregulated and miR-127-5p was downregulated in OA cartilage tissues. Knockdown of circ_0128846 increased cell viability and inhibited apoptosis, inflammation and ECM degradation in OA chondrocytes, while these effects were reversed by downregulating miR-127-5p. Moreover, circ_0128846 positively regulated NAMPT expression by sponging miR-127-5p. Furthermore, miR-127-5p promoted cell viability and suppressed apoptosis, inflammation, and ECM degradation in OA chondrocytes by directly targeting NAMPT. Conclusion Circ_0128846 knockdown might inhibit the progression of OA by upregulating miR-127-5p and downregulating NAMPT, offering a new insight into the potential application of circ_0128846 in OA treatment.


2020 ◽  
Vol 15 (1) ◽  
pp. 1013-1023
Author(s):  
Lina Xing ◽  
Jinhai Ren ◽  
Xiaonan Guo ◽  
Shukai Qiao ◽  
Tian Tian

AbstractPrevious research has revealed the involvement of microRNA-212-5p (miR-212-5p) and cyclin T2 (CCNT2) in acute myeloid leukemia (AML). However, whether the miR-212-5p/CCNT2 axis is required for the function of decitabine in AML has not been well elucidated. Quantitative reverse transcription-polymerase chain reaction was used to examine enrichment of miR-212-5p. The relationship between CCNT2 and miR-212-5p was verified by the luciferase reporter assay. Cell apoptosis was evaluated by flow cytometry and western blot. CCK-8 assay was performed to determine cell viability. Decitabine significantly repressed cell viability, while promoted cell apoptosis. Meanwhile, the expression levels of cyclinD1, CDK4, and Bcl-2 were suppressed in cells with decitabine exposure, but Bax and caspase-3 expression levels were upregulated. Besides, miR-212-5p upregulation had the similar function with decitabine in AML cell proliferation and apoptosis. Subsequently, restoration of CCNT2 attenuated miR-212-5p overexpression-induced effects in Kasumi-1 and SKNO-1 cells. In addition, miR-212-5p depletion reversed decitabine-induced CCNT2 downregulation. The miR-212-5p/CCNT2 axis had an implication in the anti-leukemic effect of decitabine in AML.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Zheng ◽  
Guanhua Hou ◽  
Yong Li

Abstract Background Circular RNA (circRNA) has been shown to be associated with osteoarthritis (OA) progression. Circ_0116061 has been found to be highly expressed in OA cartilage tissues, but its role and mechanism in OA progression remain unclear. Methods Expression levels of circ_0116061, microRNA (miR)-200b-5p, and Smad ubiquitin regulatory factor 2 (SMURF2) were detected using quantitative real-time PCR. The proliferation and apoptosis of cells were measured using cell counting kit 8 (CCK8) assay, colony formation assay, and flow cytometry. Furthermore, the protein levels of proliferation-related marker, apoptosis-related markers, inflammatory factors, and SMURF2 were tested using western blot (WB) analysis. In addition, the interaction between miR-200b-3p and circ_0116061 or SMURF2 was examined using dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. Results Circ_0116061 and SMURF2 were highly expressed, and miR-200b-3p was lowly expressed in OA cartilage tissues. Knockdown of circ_0116061 could promote the proliferation and inhibit the apoptosis and inflammation of OA chondrocytes. MiR-200b-3p could be sponged by circ_0116061, and its inhibitor could reverse the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes. SMURF2 was a target of miR-200b-3p, and its expression was positively regulated by circ_0116061. Silencing of SMURF2 also could enhance the proliferation and suppress the apoptosis and inflammation of OA chondrocytes. Furthermore, the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes also could be reversed by SMURF2 overexpression. Conclusion Our data showed that circ_0116061 might regulate the miR-200b-3p/SMURF2 axis to promote the progression of OA.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhenye Guo ◽  
Huan Wang ◽  
Feng Zhao ◽  
Min Liu ◽  
Feida Wang ◽  
...  

Abstract Background Circular RNAs (circRNAs) can act as vital players in osteoarthritis (OA). However, the roles of circRNAs in OA remain obscure. Herein, we explored the roles of exosomal circRNA bromodomain and WD repeat domain containing 1(circ-BRWD1) in OA pathology. Methods In vitro model of OA was constructed by treating CHON-001 cells with interleukin-1β (IL-1β). Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used for circ-BRWD1, BRWD, miR-1277, and TNF receptor-associated factor 6 (TRAF6) levels. RNase R assay was conducted for the feature of circ-BRWD1. Transmission electron microscopy (TEM) was employed to analyze the morphology of exosomes. Western blot assay was performed for protein levels. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, and 5-Ethynyl-2′-deoxyuridine (EDU) assay were adopted for cell viability, apoptosis, and proliferation, respectively. Enzyme-linked immunosorbent assay (ELISA) was carried out for the concentrations of interleukin-6 (IL-6) and interleukin-8 (IL-8). Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to analyze the interaction between miR-1277 and circ-BRWD1 or TRAF6. Results Circ-BRWD1 was increased in OA cartilage tissues, IL-1β-treated CHON-001 cells, and the exosomes derived from IL-1β-treated CHON-001 cells. Exosome treatment elevated circ-BRWD1 level, while exosome blocker reduced circ-BRWD1 level in IL-1β-treated CHON-001 cells. Silencing of circ-BRWD1 promoted cell viability and proliferation and repressed apoptosis, inflammation, and extracellular matrix (ECM) degradation in IL-1β-stimulated CHON-001 cells. For mechanism analysis, circ-BRWD1 could serve as the sponge for miR-1277 to positively regulate TRAF6 expression. Moreover, miR-1277 inhibition ameliorated the effects of circ-BRWD1 knockdown on IL-1β-mediated CHON-001 cell damage. Additionally, miR-1277 overexpression relieved IL-1β-induced CHON-001 cell injury, while TRAF6 elevation restored the impact. Conclusion Exosomal circ-BRWD1 promoted IL-1β-induced CHON-001 cell progression by regulating miR-1277/TRAF6 axis.


2020 ◽  
Author(s):  
Weisheng Guo ◽  
Lin Zhao ◽  
Yaguang Wei ◽  
Peng Liu ◽  
Yu Zhang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the leading threat of cancer-related death in humans with poor therapeutic effects. Circular RNAs (circRNAs) are important indicators in cancer diagnosis and prognosis. This study intended to explore the function and mechanism of circ_0015756 in HCC, providing the additional opinion for HCC treatment.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of circ_0015756 and miR-610. Cell viability was assessed by cell counting kit-8 (CCK-8) assay, and colony formation capacity was ascertained by colony formation assay. Cell proliferation and invasion were monitored by transwell assay. Cell cycle progression and apoptosis were analyzed by flow cytometry assay. Circ_0015756 oncogenicity was determined by Xenograft models. The prediction of targets was performed using the bioinformatics tools, and the verification of targeted relationship was conducted using RNA pull-down, RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The expression level of fibroblast growth factor receptor 1 (FGFR1) was measured by western blot.Result: The expression of circ_0015756 was increased in HCC tissues, serums and cells. Circ_0015756 downregulation impaired HCC cell viability, colony formation capacity, invasion and migration, induced cell cycle arrest and apoptosis, and inhibited tumor growth in vivo. MiR-610 was ensured as a target of circ_0015756, and miR-610 absence reversed the effects of circ_0015756 downregulation. Further, FGFR1 was interacted by miR-610, and FGFR1 overexpression overturned the effects of miR-610 restoration in vitro. Circ_0015756 could regulate FGFR1 expression by targeting miR-610.Conclusion: Circ_0015756 played its tumorigenic properties in HCC by activating FGFR1 and sponging miR-610, and circ_0015756 was expected to be a vital indicator in HCC diagnosis and treatment.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Peng-Wei Guo ◽  
Hai-Ting Huang ◽  
Jing Ma ◽  
Yao Zuo ◽  
Dan Huang ◽  
...  

Abstract Background Increasing evidence has indicated that circular RNAs (circRNAs) play a role in various diseases. However, the influence of circRNAs in nephritis remains unknown. Methods Microarray analysis and RT-qPCR were used to detect the expression of circRNA. Type I IFN were administrated to RMC and HEK293 cells to establish a nephritis cell model. CCK-8, MTT assay, and flow cytometry were used to assess cell proliferation, viability, and apoptosis of cells. Bioinformatics analysis and dual luciferase reporter assay detect the interaction of circ_0007059, miRNA-1278, and SHP-1. Glomerulonephritis was performed in a mouse model by administration of IFNα-expressing adenovirus. IHC staining showed the pathogenic changes. Results In the present study, the expression of circ_0007059 in type I interferon (IFN)-treated renal mesangial cells (RMCs), lupus nephritis (LN) specimens, and HEK293 cells was downregulated compared with that in normal healthy samples and untreated cells. Circ_0007059 overexpression resulted in increased cell proliferation, cell viability, apoptosis, and inflammation-associated factors (CXCL10, IFIT1, ISG15, and MX1) in RMCs and HEK293 cells. In addition, circ_0007059 overexpression significantly restored cell proliferation and viability and inhibited IFN-induced apoptosis. Further, the increased expression resulted in reduced inflammation and the downregulation of CXCL10, IFIT1, ISG15, and MX1 in RMCs and HEK293 cells. Circ_0007059 serves as a sponge for miR-1278 so that the latter can target the 3′-untranslated region of SHP-1. Overexpressed circ_0007059 inhibited miR-1278 expression and elevated SHP-1 expression, subsequently reducing STAT3 phosphorylation. Meanwhile, miR-1278 was upregulated and SHP-1 was downregulated in LN samples and IFN-treated cells. The restoration of miR-1278 counteracted the effect of circ_0007059 on viability, apoptosis, and inflammation as well as on SHP-1/STAT3 signaling in RMCs and HEK293 cells. We also investigated the role of SHP-1 overexpression in IFN-treated RMCs and HEK293 cells; SHP-1 overexpression resulted in a similar phenotype as that observed with circ_0007059 expression. Conclusions The study indicates that circ_0007059 protects RMCs against apoptosis and inflammation during nephritis by attenuating miR-1278/SHP-1/STAT3 signaling.


2020 ◽  
Author(s):  
Shuo Yu ◽  
Min Wang ◽  
Xu Li ◽  
Xingjun Guo ◽  
Renyi Qin

Abstract Background: Circular RNAs (circRNAs) are engaged in hepatocellular carcinoma (HCC) progression, but the mechanisms remain to be elucidated. This study aimed to unveil the expression pattern and potential biological mechanisms of a newly indentified circRNA, circ-PAN3, in HCC. Methods: Cell Counting Kit-8 (CCK‐8) assay and colony formation assay were used to assess cell proliferation. Transcription-quantitative PCR (RT-qPCR) analysis and western blot analysis were used to determine the relative expression level of mRNA and protein, respectively. Cell apoptosis assay was used to evaluate the apoptosis rate of transfected cells. CircInteractome and Targetscan were utilized to predict the possible targets of circRNAs and miRNAs, respectively. Luciferase reporter assay and RNA pull-down assay were used to assess the direct interaction of RNAs. HCC cancer xenograft model was used to evaluate the biological process of circ-PAN3 in vivo. Student’s t test, χ2 test or one-way ANOVA was adopted appropriately.Results: Circ-PAN3 was elevated in HCC tissues, and patients with high Circ-PAN3 expression had a poor survival outcome. Knockdown of circ-PAN3 expression suppressed cell viability, colony formation and cell proliferation in vitro and in vivo. Circ-PAN3 elevates cyclin D1 expression to promote HCC progression. Subsequently, using CircInteractome, miR-153 were confirmed to interact with circ-PAN3 and was downregulated by circ-PAN3. Further, using Targetscan, cyclin D1 was validated to interact with miR-153 and was downregulated by miR-153. Addition of miR-153 expression with corresponsive mimics significantly reduced the expression of cyclin D1. Notably, the inhibition of cell viability, colony formation and proliferation induced by knockdown of circ-PAN3 were recovered following the combination with miR-153 inhibitor, cyclin D1, respectively. Conclusion: Together, this study demonstrated that a novel circ-PAN3/miR-153/cyclin D1 axis regulatory axis that promoted HCC progression.


Pathobiology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Fei Xu ◽  
Yong-Ming Lv ◽  
Hai-Bin Wang ◽  
Ying-Chun Song

<b><i>Background:</i></b> Osteoarthritis (OA) is a common type of degenerative joint diseases that is regulated by a combination of complex intercellular signals and modulators, including non-coding RNAs. Mounting evidence suggests that miR-31-5p is physiologically involved in the regulation of chondrocytes, but the mechanism remains unclear. <b><i>Methods:</i></b> Expression levels of miR-31-5p and SOX4 in OA cartilage tissues and in IL-1β-stimulated chondrocytes were examined by quantification polymerase chain reaction (q-PCR) or immunohistochemistry assays. Cell proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Expression of LC3 was detected using immunofluorescence staining. Expressions of autophagy-related proteins and extracellular regulated protein kinase (ERK)/mechanical target of rapamycin kinase (mTORC1) signal-related proteins were measured by Western blot analysis. Molecular interaction was validated by dual luciferase reporter assay. <b><i>Results:</i></b> Downregulation of miR-31-5p and upregulation of SOX4 were observed in both OA patients and OA chondrocytes. Mechanistic experiments revealed that miR-31-5p negatively modulated SOX4 expression by directly targeting its 3′- untranslated region. Moreover, overexpression of miR-31-5p suppressed the activation of mTORC1 in an ERK-dependent manner by inhibiting SOX4. Further functional experiments demonstrated that overexpressing miR-31-5p in OA chondrocytes markedly promoted its proliferation and autophagy while inhibiting apoptosis. However, these effects were abolished by overexpression of SOX4 or treatment with 3BDO, an mTOR activator. <b><i>Conclusion:</i></b> These results demonstrated that miR-31-5p enhanced survival and autophagy of OA chondrocytes through inactivation of mTORC1 via directly targeting SOX4, suggesting that miR-31-5p may play a protective role in OA progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xueliang Yang ◽  
Quan Sun ◽  
Yongming Song ◽  
Wenli Li

Background. Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC. Methods. The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC50 of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 in vivo. Results. circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells. Conclusion. circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document