scholarly journals Cardiac surgery in acute myocardial infarction: crystalloid versus blood cardioplegia – an experimental study

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Andreas Boening ◽  
Maximilian Hinke ◽  
Martina Heep ◽  
Kerstin Boengler ◽  
Bernd Niemann ◽  
...  

Abstract Background Because hearts in acute myocardial infarction are often prone to ischemia-reperfusion damage during cardiac surgery, we investigated the influence of intracellular crystalloid cardioplegia solution (CCP) and extracellular blood cardioplegia solution (BCP) on cardiac function, metabolism, and infarct size in a rat heart model of myocardial infarction. Methods Following euthanasia, the hearts of 50 rats were quickly excised, cannulated, and inserted into a blood-perfused isolated heart apparatus. A regional myocardial infarction was created in the infarction group (18 hearts) for 120 min; the control group (32 hearts) was not subjected to infarction. In each group, either Buckberg BCP or Bretschneider CCP was administered for an aortic clamping time of 90 min. Functional parameters were recorded during reperfusion: coronary blood flow, left ventricular developed pressure (LVDP) and contractility (dp/dt max). Infarct size was determined by planimetry. The results were compared between the groups using analysis of variance or parametric tests, as appropriate. Results Cardiac function after acute myocardial infarction, 90 min of cardioplegic arrest, and 90 min of reperfusion was better preserved with Buckberg BCP than with Bretschneider CCP relative to baseline (BL) values (LVDP 54 ± 11% vs. 9 ± 2.9% [p = 0.0062]; dp/dt max. 73 ± 11% vs. 23 ± 2.7% [p = 0.0001]), whereas coronary flow was similarly impaired (BCP 55 ± 15%, CCP 63 ± 17% [p = 0.99]). The infarct in BCP-treated hearts was smaller (25% of myocardium) and limited to the area of coronary artery ligation, whereas in CCP hearts the infarct was larger (48% of myocardium; p = 0.029) and myocardial necrosis was distributed unevenly to the left ventricular wall. Conclusions In a rat model of acute myocardial infarction followed by cardioplegic arrest, application of BCP leads to better myocardial recovery than CCP.

Author(s):  
Alexander B Veitinger ◽  
Audrey Komguem ◽  
Lena Assling-Simon ◽  
Martina Heep ◽  
Julia Schipke ◽  
...  

Abstract OBJECTIVES Esmolol-based cardioplegic arrest offers better cardioprotection than crystalloid cardioplegia but has been compared experimentally with blood cardioplegia only once. We investigated the influence of esmolol crystalloid cardioplegia (ECCP), esmolol blood cardioplegia (EBCP) and Calafiore blood cardioplegia (Cala) on cardiac function, metabolism and infarct size in non-infarcted and infarcted isolated rat hearts. METHODS Two studies were performed: (i) the hearts were subjected to a 90-min cardioplegic arrest with ECCP, EBCP or Cala and (ii) a regional myocardial infarction was created 30 min before a 90-min cardioplegic arrest. Left ventricular peak developed pressure (LVpdP), velocity of contractility (dLVP/dtmax), velocity of relaxation over time (dLVP/dtmin), heart rate and coronary flow were recorded. In addition, the metabolic parameters were analysed. The infarct size was determined by planimetry, and the myocardial damage was determined by electron microscopy. RESULTS In non-infarcted hearts, cardiac function was better preserved with ECCP than with EBCP or Cala relative to baseline values (LVpdP: 100 ± 28% vs 86 ± 11% vs 57 ± 7%; P = 0.002). Infarcted hearts showed similar haemodynamic recovery for ECCP, EBCP and Cala (LVpdP: 85 ± 46% vs 89 ± 55% vs 56 ± 26%; P = 0.30). The lactate production with EBCP was lower than with ECCP (0.6 ± 0.7 vs 1.4 ± 0.5 μmol/min; P = 0.017). The myocardial infarct size and (ECCP vs EBCP vs Cala: 16 ± 7% vs 15 ± 9% vs 24 ± 13%; P = 0.21) the ultrastructural preservation was similar in all groups. CONCLUSIONS In non-infarcted rat hearts, esmolol-based cardioplegia, particularly ECCP, offers better myocardial protection than Calafiore. After an acute myocardial infarction, cardioprotection with esmolol-based cardioplegia is similar to that with Calafiore.


Author(s):  
Timur Yagudin ◽  
Yue Zhao ◽  
Haiyu Gao ◽  
Yang Zhang ◽  
Ying Yang ◽  
...  

Abstract Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.


2013 ◽  
Vol 305 (4) ◽  
pp. H542-H550 ◽  
Author(s):  
Toshihiro Shinbo ◽  
Kenichi Kokubo ◽  
Yuri Sato ◽  
Shintaro Hagiri ◽  
Ryuji Hataishi ◽  
...  

Inhaled nitric oxide (NO) has been reported to decrease the infarct size in cardiac ischemia-reperfusion (I/R) injury. However, reactive nitrogen species (RNS) produced by NO cause myocardial dysfunction and injury. Because H2 is reported to eliminate peroxynitrite, it was expected to reduce the adverse effects of NO. In mice, left anterior descending coronary artery ligation for 60 min followed by reperfusion was performed with inhaled NO [80 parts per million (ppm)], H2 (2%), or NO + H2, starting 5 min before reperfusion for 35 min. After 24 h, left ventricular function, infarct size, and area at risk (AAR) were assessed. Oxidative stress associated with reactive oxygen species (ROS) was evaluated by staining for 8-hydroxy-2′-deoxyguanosine and 4-hydroxy-2-nonenal, that associated with RNS by staining for nitrotyrosine, and neutrophil infiltration by staining for granulocyte receptor-1. The infarct size/AAR decreased with breathing NO or H2 alone. NO inhalation plus H2 reduced the infarct size/AAR, with significant interaction between the two, reducing ROS and neutrophil infiltration, and improved the cardiac function to normal levels. Although nitrotyrosine staining was prominent after NO inhalation alone, it was eliminated after breathing a mixture of H2 with NO. Preconditioning with NO significantly reduced the infarct size/AAR, but not preconditioning with H2. In conclusion, breathing NO + H2 during I/R reduced the infarct size and maintained cardiac function, and reduced the generation of myocardial nitrotyrosine associated with NO inhalation. Administration of NO + H2 gases for inhalation may be useful for planned coronary interventions or for the treatment of I/R injury.


2019 ◽  
Vol 316 (3) ◽  
pp. H684-H692 ◽  
Author(s):  
Pierre Sicard ◽  
Timothée Jouitteau ◽  
Thales Andrade-Martins ◽  
Abdallah Massad ◽  
Glaucy Rodrigues de Araujo ◽  
...  

Right ventricular (RV) dysfunction can lead to complications after acute inferior myocardial infarction (MI). However, it is unclear how RV failure after MI contributes to left-sided dysfunction. The aim of the present study was to investigate the consequences of right coronary artery (RCA) ligation in mice. RCA ligation was performed in C57BL/6JRj mice ( n = 38). The cardiac phenotypes were characterized using high-resolution echocardiography performed up to 4 wk post-RCA ligation. Infarct size was measured using 2,3,5-triphenyltetrazolium chloride staining 24 h post-RCA ligation, and the extent of the fibrotic area was determined 4 wk after MI. RV dysfunction was confirmed 24 h post-RCA ligation by a decrease in the tricuspid annular plane systolic excursion ( P < 0.001) and RV longitudinal strain analysis ( P < 0.001). Infarct size measured ex vivo represented 45.1 ± 9.1% of the RV free wall. RCA permanent ligation increased the RV-to-left ventricular (LV) area ratio ( P < 0.01). Septum hypertrophy ( P < 0.01) was associated with diastolic septal flattening. During the 4-wk post-RCA ligation, LV ejection fraction was preserved, yet it was associated with impaired LV diastolic parameters ( E/ E′, global strain rate during early diastole). Histological staining after 4 wk confirmed the remodeling process with a thin and fibrotic RV. This study validates that RCA ligation in mice is feasible and induces RV heart failure associated with the development of LV diastolic dysfunction. Our model offers a new opportunity to study mechanisms and treatments of RV/LV dysfunction after MI. NEW & NOTEWORTHY Right ventricular (RV) dysfunction frequently causes complications after acute inferior myocardial infarction. How RV failure contributes to left-sided dysfunction is elusive because of the lack of models to study molecular mechanisms. Here, we created a new model of myocardial infarction by permanently tying the right coronary artery in mice. This model offers a new opportunity to unravel mechanisms underlying RV/left ventricular dysfunction and evaluate drug therapy.


2004 ◽  
Vol 286 (1) ◽  
pp. H381-H387 ◽  
Author(s):  
Ling Chen ◽  
Chang Xun Chen ◽  
Xiaohong Tracey Gan ◽  
Norbert Beier ◽  
Wolfgang Scholz ◽  
...  

Sodium/hydrogen exchange (NHE) inhibitors show promise as potential therapeutic agents for the treatment of heart failure, but it is not known whether they can reverse the maladaptive remodeling that results in heart failure. We sought to determine the effect of the NHE-1-specific inhibitor EMD-87580 (EMD) on heart failure produced by myocardial infarction in the rat and to assess whether up to 4 wk of treatment delay results in beneficial effects. Male Sprague-Dawley rats were subjected to coronary artery ligation (or a sham procedure) and followed for up to 3 mo, at which time hypertrophy and hemodynamics were determined. EMD was provided in the diet, and treatment commenced immediately or 2–4 wk after ligation. EMD significantly reduced hemodynamic abnormalities, including the elevation in left ventricular end-diastolic pressure, and diminished the loss of systolic function with all treatment protocols. Left ventricular dilatation and hypertrophy, as assessed by heart weight, cell size, and atrial natriuretic peptide (ANP) expression, were similarly reversed to sham or near-sham levels. In addition, the increased plasma ANP and pro-ANP values were reversed to levels not significantly different from sham. Surprisingly, virtually all beneficial effects were identical with all treatment protocols. These effects were observed in the absence of infarct size reduction or blood pressure-lowering effects. Our results suggest that NHE-1 inhibition attenuates and reverses postinfarction remodeling and heart failure with a treatment delay of up to 4 wk after infarction. The effect is independent of infarct size or afterload reduction, indicating a direct effect on the myocardium.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Stanley Chia ◽  
O. Christopher Raffel ◽  
Faisal Merchant ◽  
Frans J Wackers ◽  
Fred Senatore ◽  
...  

Background: Assessment of cardiac biomarker release has been traditionally used to estimate the size of myocardial damage after acute myocardial infarction (AMI). However, the significance of cardiac biomarkers in the setting of primary percutaneous coronary intervention (PCI) has not been systematically studied in a large patient cohort. We evaluated the usefulness of serial and single time-point measures of various cardiac biomarkers (creatine kinase (CK), CK-MB, troponin T and I) in predicting infarct size and left ventricular ejection fraction (LVEF) after primary PCI. Methods: EVOLVE (Evaluation of MCC-135 for Left Ventricular Salvage in AMI) was a randomized double-blind, placebo-controlled trial comparing the efficacy of intracellular calcium modulator as an adjunct to primary PCI in patients with first large AMI. Levels of cardiac biomarkers (CK, CK-MB mass, troponin T and I) were determined in 375 patients at baseline before PCI and 2, 4, 12, 24, 48 and 72 hours thereafter. Single photon emission computed tomography imaging was performed to measure infarct size and LVEF on day 5. Results: Area under curve and peak concentrations of all cardiac markers: CK, CK-MB mass, troponin T and troponin I were significantly correlated with myocardial infarct size and LVEF determined on day 5 (Spearman correlation, all P< 0.001; Table ). Troponin I, however provided the best predictor and a single measure at 72 hr was a strong indicator of both infarct size and LVEF. Using receiver operator characteristics curve, troponin I cutoff value of >55 pg/mL at 72 hr has 90% sensitivity and 70% specificity for detection of large infarct size≥10% ( c =0.88; P< 0.001). Conclusions: Plasma levels of CK, CK-MB, troponin T and troponin I remain useful predictors of infarct size and cardiac function in the era of primary PCI for AMI. A single measurement of circulating troponin I at 72 hours can provide an effective and convenient indicator of infarct size and LVEF in clinical practice. Correlation of cardiac biomarkers with Day 5 SPECT determined infarct size and LVEF


Sign in / Sign up

Export Citation Format

Share Document