scholarly journals Myopia-26, the female-limited form of early-onset high myopia, occurring in a European family

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Noémi Széll ◽  
Tamás Fehér ◽  
Zoltán Maróti ◽  
Tibor Kalmár ◽  
Dóra Latinovics ◽  
...  

Abstract Background Female-limited early-onset high myopia, also called Myopia-26 is a rare monogenic disorder characterized by severe short sightedness starting in early childhood and progressing to blindness potentially by the middle ages. Despite the X-linked locus of the mutated ARR3 gene, the disease paradoxically affects females only, with males being asymptomatic carriers. Previously, this disease has only been observed in Asian families and has not gone through detailed investigation concerning collateral symptoms or pathogenesis. Results We found a large Hungarian family displaying female-limited early-onset high myopia. Whole exome sequencing of two individuals identified a novel nonsense mutation (c.214C>T, p.Arg72*) in the ARR3 gene. We carried out basic ophthalmological testing for 18 family members, as well as detailed ophthalmological examination (intraocular pressure, axial length, fundus appearance, optical coherence tomography, visual field- testing) as well as colour vision- and electrophysiology tests (standard and multifocal electroretinography, pattern electroretinography and visual evoked potentials) for eight individuals. Ophthalmological examinations did not reveal any signs of cone dystrophy as opposed to animal models. Electrophysiology and colour vision tests similarly did not evidence a general cone system alteration, rather a central macular dysfunction affecting both the inner and outer (postreceptoral and receptoral) retinal structures in all patients with ARR3 mutation. Conclusions This is the first description of a Caucasian family displaying Myopia-26. We present two hypotheses that could potentially explain the pathomechanism of this disease.

2021 ◽  
Author(s):  
Noémi Széll ◽  
Tamas Feher ◽  
Zoltán Maróti ◽  
Tibor Kalmár ◽  
Dóra Latinovics ◽  
...  

Abstract Background: Female-limited early-onset high myopia, also called Myopia-26 is a rare monogenic disorder characterized by severe short sightedness starting in early childhood and progressing to blindness potentially by the middle ages. Despite the X-linked locus of the mutated ARR3 gene, the disease paradoxically affects females only, with males being asymptomatic carriers. Previously, this disease has only been observed in Asian families and has not gone through detailed investigation concerning collateral symptoms or pathogenesis Results: We found a large Hungarian family displaying female-limited early-onset high myopia. Whole exome sequencing of two individuals identified a novel nonsense mutation (c.214C>T, p.Arg72*) in the ARR3 gene. We carried out basic ophthalmological testing for 18 family members, as well as detailed ophthalmological examination (intraocular pressure, axial length, fundus appearance, optical coherence tomography, visual field- testing) as well as colour vision- and electrophysiology tests (standard and multifocal electroretinography, pattern electroretinography and visual evoked potentials) for eight individuals. Ophthalmological examinations did not reveal any signs of cone dystrophy as opposed to animal models. Electrophysiology and colour vision tests similarly did not evidence a general cone system alteration, rather a central macular dysfunction affecting both the inner and outer (postreceptoral and receptoral) retinal structures in all patients with ARR3 mutation. Conclusions: This is the first description of a Caucasian family displaying Myopia-26. We present two hypotheses that could potentially explain the pathomechanism of this disease.


2020 ◽  
Author(s):  
Noémi Széll ◽  
Tamas Feher ◽  
Zoltán Maróti ◽  
Tibor Kalmár ◽  
Dóra Latinovics ◽  
...  

Abstract Background: Female-limited early-onset high myopia, also called Myopia-26 is a rare monogenic disorder characterized by severe short sightedness starting in early childhood and progressing to blindness potentially by the middle ages. Despite the X-linked locus of the mutated ARR3 gene, the disease paradoxically affects females only, with males being asymptomatic carriers. Previously, this disease has only been observed in Asian families and has not gone through detailed investigation concerning collateral symptoms or pathogenesisResults: We found a large Hungarian family displaying female-limited early-onset high myopia. Whole exome sequencing of two individuals identified a novel nonsense mutation (c.214C>T, p.Arg72*) in the ARR3 gene. We carried out basic ophthalmological testing for 18 family members, as well as detailed ophthalmological examination (intraocular pressure, axial length, fundus appearance, optical coherence tomography, visual field- testing) as well as colour vision- and electrophysiology tests (standard and multifocal electroretinography, pattern electroretinography and visual evoked potentials) for eight individuals. Ophthalmological examinations did not reveal any signs of cone dystrophy as opposed to animal models. Electrophysiology and colour vision tests similarly did not evidence a general cone system alteration, rather a central macular dysfunction affecting both the inner and outer (postreceptoral and receptoral) retinal structures in all patients with ARR3 mutation. Conclusions: This is the first description of a Caucasian family displaying Myopia-26. We present two hypotheses that could potentially explain the pathomechanism of this disease.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 499
Author(s):  
Vlasta Hadalin ◽  
Maja Šuštar ◽  
Marija Volk ◽  
Aleš Maver ◽  
Jana Sajovic ◽  
...  

Mutations in RPGRORF15 are associated with rod-cone or cone/cone-rod dystrophy, the latter associated with mutations at the distal end. We describe the phenotype associated with a novel variant in the terminal codon of the RPGRORF15 c.3457T>A (Ter1153Lysext*38), which results in a C-terminal extension. Three male patients from two families were recruited, aged 31, 35, and 38 years. Genetic testing was performed by whole exome sequencing. Filtered variants were analysed according to the population frequency, ClinVar database, the variant’s putative impact, and predicted pathogenicity; and were classified according to the ACMG guidelines. Examination included visual acuity (Snellen), colour vision (Ishihara), visual field, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electrophysiology. All patients were myopic, and had central scotoma and reduced colour vision. Visual acuities on better eyes were counting fingers, 0.3 and 0.05. Electrophysiology showed severely reduced cone-specific responses and macular dysfunction, while the rod-specific response was normal. FAF showed hyperautofluorescent ring centred at the fovea encompassing an area of photoreceptor loss approximately two optic discs in diameter (3462–6342 μm). Follow up after 2–11 years showed enlargement of the diameter (avg. 100 μm/year). The novel c.3457T>A (Ter1153Lysext*38) mutation in the terminal RPGRORF15 codon is associated with cone dystrophy, which corresponds to the previously described phenotypes associated with mutations in the distal end of the RPGRORF15. Minimal progression during follow-up years suggests a relatively stable disease after the initial loss of the central cones.


2017 ◽  
Vol 114 (16) ◽  
pp. 4219-4224 ◽  
Author(s):  
Zi-Bing Jin ◽  
Jinyu Wu ◽  
Xiu-Feng Huang ◽  
Chun-Yun Feng ◽  
Xue-Bi Cai ◽  
...  

The etiology of the highly myopic condition has been unclear for decades. We investigated the genetic contributions to early-onset high myopia (EOHM), which is defined as having a refraction of less than or equal to −6 diopters before the age of 6, when children are less likely to be exposed to high educational pressures. Trios (two nonmyopic parents and one child) were examined to uncover pathogenic mutations using whole-exome sequencing. We identified parent-transmitted biallelic mutations or de novo mutations in as-yet-unknown or reported genes in 16 probands. Interestingly, an increased rate of de novo mutations was identified in the EOHM patients. Among the newly identified candidate genes, a BSG mutation was identified in one EOHM proband. Expanded screening of 1,040 patients found an additional four mutations in the same gene. Then, we generated Bsg mutant mice to further elucidate the functional impact of this gene and observed typical myopic phenotypes, including an elongated axial length. Using a trio-based exonic screening study in EOHM, we deciphered a prominent role for de novo mutations in EOHM patients without myopic parents. The discovery of a disease gene, BSG, provides insights into myopic development and its etiology, which expands our current understanding of high myopia and might be useful for future treatment and prevention.


2021 ◽  
Vol 10 (11) ◽  
pp. 2265
Author(s):  
Kei Mizobuchi ◽  
Takaaki Hayashi ◽  
Noriko Oishi ◽  
Daiki Kubota ◽  
Shuhei Kameya ◽  
...  

Background: Little is known about genotype–phenotype correlations of RP1-associated retinal dystrophies in the Japanese population. We aimed to investigate the genetic spectrum of RP1 variants and provide a detailed description of the clinical findings in Japanese patients. Methods: In total, 607 patients with inherited retinal diseases were examined using whole-exome/whole-genome sequencing (WES/WGS). PCR-based screening for an Alu element insertion (c.4052_4053ins328/p.Tyr1352AlafsTer9) was performed in 18 patients with autosomal-recessive (AR)-retinitis pigmentosa (RP) or AR-cone dystrophy (COD)/cone-rod dystrophy (CORD), including seven patients with heterozygous RP1 variants identified by WES/WGS analysis, and 11 early onset AR-RP patients, in whom no pathogenic variant was identified. We clinically examined 25 patients (23 families) with pathogenic RP1 variants, including five patients (five families) with autosomal-dominant (AD)-RP, 13 patients (11 families) with AR-RP, and seven patients (seven families) with AR-COD/CORD. Results: We identified 18 pathogenic RP1 variants, including seven novel variants. Interestingly, the Alu element insertion was the most frequent variant (32.0%, 16/50 alleles). The clinical findings revealed that the age at onset and disease progression occurred significantly earlier and faster in AR-RP patients compared to AD-RP or AR-COD/CORD patients. Conclusions: Our results suggest a genotype–phenotype correlation between variant types/locations and phenotypes (AD-RP, AR-RP, and AR-COD/CORD), and the Alu element insertion was the most major variant in Japanese patients with RP1-associated retinal dystrophies.


2021 ◽  
Vol 22 (12) ◽  
pp. 6410
Author(s):  
Vasily Smirnov ◽  
Olivier Grunewald ◽  
Jean Muller ◽  
Christina Zeitz ◽  
Carolin D. Obermaier ◽  
...  

Variants of the TTLL5 gene, which encodes tubulin tyrosine ligase-like family member five, are a rare cause of cone dystrophy (COD) or cone-rod dystrophy (CORD). To date, only a few TTLL5 patients have been clinically and genetically described. In this study, we report five patients harbouring biallelic variants of TTLL5. Four adult patients presented either COD or CORD with onset in the late teenage years. The youngest patient had a phenotype of early onset severe retinal dystrophy (EOSRD). Genetic analysis was performed by targeted next generation sequencing of gene panels and assessment of copy number variants (CNV). We identified eight variants, of which six were novel, including two large multiexon deletions in patients with COD or CORD, while the EOSRD patient harboured the novel homozygous p.(Trp640*) variant and three distinct USH2A variants, which might explain the observed rod involvement. Our study highlights the role of TTLL5 in COD/CORD and the importance of large deletions. These findings suggest that COD or CORD patients lacking variants in known genes may harbour CNVs to be discovered in TTLL5, previously undetected by classical sequencing methods. In addition, variable phenotypes in TTLL5-associated patients might be due to the presence of additional gene defects.


2015 ◽  
Vol 8 (1) ◽  
pp. 78
Author(s):  
Sabyasachi Bandyopadhyay ◽  
Indrani Bhattacharjee ◽  
SanatKumar Ghosh ◽  
KanchanKumar Mondal

2018 ◽  
Vol 95 (2) ◽  
pp. 329-333 ◽  
Author(s):  
Cécile Méjécase ◽  
Aurélie Hummel ◽  
Saddek Mohand-Saïd ◽  
Camille Andrieu ◽  
Said El Shamieh ◽  
...  

2020 ◽  
Author(s):  
Riccardo Sangermano ◽  
Iris Deitch ◽  
Virginie G Peter ◽  
Rola Ba-Abbad ◽  
Emily M Place ◽  
...  

Purpose: Pathogenic variants in INPP5E cause Joubert syndrome, a systemic disorder that can manifest with retinal degeneration among other clinical features. We aimed to evaluate the role of INPP5E variants in non-syndromic inherited retinal degenerations (IRDs) of varying severity. Methods: Targeted or genome sequencing were performed in 12 unrelated non-syndromic IRD families from multiple research hospitals. Detailed clinical examination was conducted in all probands. The impact of new likely pathogenic variants was modeled on a tertiary INPP5E protein structure and all the new and published variants were analyzed for their deleteriousness and phenotypic correlation. Results: Fourteen INPP5E rare alleles were detected, 12 of which were novel. Retinal degeneration in all 12 probands was clinically distinguishable on the basis of onset and severity into Leber congenital amaurosis (n=4) and a milder, later-onset rod-cone dystrophy (n=8). Two probands showed mild ciliopathy features that resolved in childhood. Analysis of the combined impact of both alleles in syndromic and non-syndromic INPP5E patients did not reveal clear genotype-phenotype correlation, suggesting involvement of genetic modifiers. Conclusions: The study expands the phenotypic spectrum of disorders due to pathogenic variants in INPP5E and describes a new disease association with previously underdiagnosed forms of early-onset non-syndromic IRD.


Sign in / Sign up

Export Citation Format

Share Document