scholarly journals Evolution of the repression mechanisms in circadian clocks

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jonathan Tyler ◽  
Yining Lu ◽  
Jay Dunlap ◽  
Daniel B. Forger

Abstract Background Circadian (daily) timekeeping is essential to the survival of many organisms. An integral part of all circadian timekeeping systems is negative feedback between an activator and repressor. However, the role of this feedback varies widely between lower and higher organisms. Results Here, we study repression mechanisms in the cyanobacterial and eukaryotic clocks through mathematical modeling and systems analysis. We find a common mathematical model that describes the mechanism by which organisms generate rhythms; however, transcription’s role in this has diverged. In cyanobacteria, protein sequestration and phosphorylation generate and regulate rhythms while transcription regulation keeps proteins in proper stoichiometric balance. Based on recent experimental work, we propose a repressor phospholock mechanism that models the negative feedback through transcription in clocks of higher organisms. Interestingly, this model, when coupled with activator phosphorylation, allows for oscillations over a wide range of protein stoichiometries, thereby reconciling the negative feedback mechanism in Neurospora with that in mammals and cyanobacteria. Conclusions Taken together, these results paint a picture of how circadian timekeeping may have evolved.

1979 ◽  
Vol 55 (6) ◽  
pp. 776-786
Author(s):  
Masatomo MORI ◽  
Kihachi OHSHIMA ◽  
Sakae MARUTA ◽  
Hitoshi FUKUDA ◽  
Yohnosuke SHIMOMURA ◽  
...  

1995 ◽  
Vol 41 (4) ◽  
pp. 36-38
Author(s):  
Ye. V. V. Naumenko ◽  
A. V. Amikishiyeva ◽  
L. I. Serova

The role of gamma-aminobutyric acid (GABA) of the brain and its receptors in the hypothalamo-pituitary-testicular (HPT) regulation by the negative feedback mechanism was for the first time studied in sham-operated and unilaterally castrated adult Wister rats. Increased level of GABA in the central nervous system following an injection of GABA transaminase inhibitor, aminoacetic acid, into the lateral ventricle of the brain was associated with activation of a compensatory increase of testosterone level in the blood, caused by unilateral castration. GABA effect is mediated through the receptors. Muscimol stimulation of GABA-A receptors of the central nervous system activated and their blocking with bicucullin inhibited a compensatory increase of testosterone level in the blood caused by hemicastration. Baclofen stimulation of cerebral GABA-B receptors was associated with an inhibition and their saclofen blocking with stimulation of the level of male sex steroid hormone in the blood following unilateral castration. A conclusion is made about participation of GABAergic mechanisms of the brain in the regulation of HPT function via the negative feedback mechanism


2008 ◽  
Vol 457 (6) ◽  
pp. 1351-1360 ◽  
Author(s):  
M. Düfer ◽  
D. Haspel ◽  
P. Krippeit-Drews ◽  
L. Aguilar-Bryan ◽  
J. Bryan ◽  
...  

2013 ◽  
Vol 10 (81) ◽  
pp. 20121009 ◽  
Author(s):  
Tomer J. Czaczkes ◽  
Christoph Grüter ◽  
Francis L. W. Ratnieks

Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Damian G Romero ◽  
Maria W Plonczynski ◽  
Licy L Yanes ◽  
Tanganika R Washington ◽  
Gina Covington ◽  
...  

2012 ◽  
Vol 629 ◽  
pp. 171-175
Author(s):  
Wen Zhong Jin ◽  
Su Fang Li ◽  
Wei Zhang

The new technology of superalloy vacuum-electromagnetic casting was developed and the feeding mathematical model melt in vacuum-electromagnetic casting was established. The availability of mathematical model was approved by the experiments of the IN100 superalloy. The experimental results indicate that the feeding capacity of melt in vacuum casting can be greatly increased by imposing the 50Hz, 60A rotating electromagnetic stirring, which can decrease the central shrinkage cavity in superalloy ingots, so the quality of the superalloy ingots can be wide-range improved.


Sign in / Sign up

Export Citation Format

Share Document