scholarly journals Inverse relationship between serum adenosine deaminase levels and islet beta cell function in patients with type 2 diabetes

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Cao ◽  
Hong Wang ◽  
Jian-bin Su ◽  
Xue-qin Wang ◽  
Dong-mei Zhang ◽  
...  

Abstract Objective Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease, which characterized by islet beta cell dysfunction. Serum adenosine deaminase (ADA) is an important enzyme that regulates the biological activity of insulin, and its levels are greatly increased in inflammatory diseases with insulin resistance. The present study was designed to explore the relationship between serum ADA levels and islet beta cell function in patients with T2D. Methods This cross-sectional study recruited 1573 patients with T2D from the Endocrinology Department of the Affiliated Hospital 2 of Nantong University between 2015 and 2018. All participants were received serum ADA test and oral glucose tolerance test (OGTT). Insulin sensitivity index (assessed by Matsuda index using C-peptide, ISIM-cp), insulin secretion index (assessed by ratio of area under the C-peptide curve to glucose curve, AUCcp/glu) and islet beta cell function (assessed by insulin secretion-sensitivity index 2 using C-peptide, ISSI2cp) were derived from OGTT. And other clinical parameters, such as HbA1c, were also collected. Results It was showed that HbA1c was significantly increased, while ISIM-cp, AUCcp/glu and ISSI2cp significantly decreased, across ascending quartiles of serum ADA levels. Moreover, serum ADA levels were negatively correlated with ISSI2cp (r = − 0.267, p < 0.001). Furthermore, after adjusting for other clinical parameters by multiple linear regression analysis, serum ADA levels were still independently associated with ISSI2cp (β =  − 0.125, t =  − 5.397, p < 0.001, adjusted R2 = 0.459). Conclusions Serum ADA levels are independently associated with islet beta cell function in patients with T2D.

Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 486 ◽  
Author(s):  
Hana Kahleova ◽  
Andrea Tura ◽  
Marta Klementova ◽  
Lenka Thieme ◽  
Martin Haluzik ◽  
...  

Diminished postprandial secretion of incretins and insulin represents one of the key pathophysiological mechanisms behind type 2 diabetes (T2D). We tested the effects of two energy- and macronutrient-matched meals: A standard meat (M-meal) and a vegan (V-meal) on postprandial incretin and insulin secretion in participants with T2D. A randomized crossover design was used in 20 participants with T2D. Plasma concentrations of glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), amylin, and gastric inhibitory peptide (GIP) were determined at 0, 30, 60, 120, and 180 min. Beta-cell function was assessed with a mathematical model, using C-peptide deconvolution. Repeated-measures ANOVA was used for statistical analysis. Postprandial plasma glucose responses were similar after both test meals (p = 0.64). An increase in the stimulated secretion of insulin (by 30.5%; 95% CI 21.2 to 40.7%; p < 0.001), C-peptide (by 7.1%; 95% CI 4.1 to 9.9%; p < 0.001), and amylin (by 15.7%; 95% CI 11.8 to 19.7%; p < 0.001) was observed following consumption of the V-meal. An increase in stimulated secretion of GLP-1 (by 19.2%; 95% CI 12.4 to 26.7%; p < 0.001) and a decrease in GIP (by −9.4%; 95% CI −17.3 to −0.7%; p = 0.02) were observed after the V-meal. Several parameters of beta-cell function increased after the V-meal, particularly insulin secretion at a fixed glucose value 5 mmol/L, rate sensitivity, and the potentiation factor. Our results showed an increase in postprandial incretin and insulin secretion, after consumption of a V-meal, suggesting a therapeutic potential of plant-based meals for improving beta-cell function in T2D.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Harutoshi Ozawa ◽  
Kenji Fukui ◽  
Sho Komukai ◽  
Yoshiya Hosokawa ◽  
Yukari Fujita ◽  
...  

Abstract Objective This study aimed to clarify the clinical significance of the maximum body mass index (BMI) before the onset of type 2 diabetes (MBBO) for predicting pancreatic beta-cell function. Methods This was a cross-sectional observational study. Of 1304 consecutively admitted patients with type 2 diabetes, we enrolled 410 patients satisfying the criteria in this study. The correlations between the C-peptide index (CPI), which is one of the parameters that reflects beta-cell function, and various clinical parameters, including MBBO and duration of diabetes, were analyzed in multiple linear regression analyses. Results The analyses revealed that MBBO was correlated with CPI independently after adjustment for age, sex, HbA1c, and duration of diabetes. When we divided the subjects into three subgroups by MBBO (MBBO &lt; 25 kg/m2; 25 kg/m2 ≤ MBBO &lt; 30 kg/m2; MBBO ≥ 30 kg/m2), CPI was negatively correlated with duration of diabetes in each subgroup, while the rates of CPI based on the duration of diabetes were not different among the three MBBO subgroups. In contrast, the declining rates of CPI were higher in the BMI ≥ 25 kg/m2 group on admission than in the BMI &lt; 25 kg/m2 group on admission. Conclusions MBBO may be an independent factor correlating with beta-cell function and may predict insulin secretion capacity at diagnosis, but it does not seem to affect the rate of decline in insulin secretion capacity after diagnosis. It is important to preserve beta-cell function by decreasing a patient’s BMI during treatment after diagnosis regardless of MBBO.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Zoe Quandt ◽  
Katy K Tsai ◽  
Victoria C Hsiao

Abstract Background: Autoimmune diabetes mellitus (CPI-DM) caused by immune checkpoint inhibitors (CPIs) is rare- occurring in approximately one percent of patients exposed to this form of cancer immunotherapy. Typically, this immune related adverse event occurs after treatment with PD-1/PD-L1 inhibitors. It is characterized by abrupt insulinopenia leading to acute hyperglycemia. Beta cell autoantibodies are positive in approximately half the cases. DKA is common at the time of diagnosis. Recovery of beta cell function has been reported in only two case reports. In one case, spontaneous resolution occurred following cessation of CPI therapy and in the other the patient was treated with infliximab for concurrent inflammatory arthritis prior to resolution of CPI-DM. Clinical Case: A 50-year-old woman was started on adjuvant pembrolizumab for stage IIIC melanoma following surgery. She had no prior history of diabetes mellitus, thyroid disease, or other autoimmune disease. Pre-infusion random blood glucoses (RBG) were 84 - 105 mg/dL. After 36 weeks, she developed hypothyroidism (TSH 17.5 (0.5-4.1 mIU/L), FT4 6 (10-18 ug/dL)) and started levothyroxine. Pembrolizumab was continued. For nine weeks following her diagnosis with CPI- hypothyroidism, her pre-infusion RBG ranged from 102-133. At 45 weeks (15 cycles) after initiating pembrolizumab, her RBG was 260. She was not on glucocorticoids and had no other signs of inflammation or stress. Pembrolizumab was continued. Just prior to her 17th cycle, 48 weeks after initiating adjuvant pembrolizumab, her RBG was 482 with a normal anion gap and HCO3, and her A1c was 8.9%. Her last dose of pembrolizumab was held. She started metformin and liraglutide. In just three weeks, a random c-peptide was inadequate at 1.7 (0.8-3.5 ng/mL) with a recent RBG of 220 and A1c of 10.3%, showing the acuity and extremity of her hyperglycemia. Over the course of the year, she has achieved excellent glucose control (A1c 6.3-7.1) on this regimen with preservation of insulin production (c-peptides 1.4-1.8 with matched RBG 92-129). She never required insulin. Her beta cell autoantibodies are negative. Clinical Lessons: This is a case of CPI-DM in which the patient did not have complete loss of beta-cell function. The acuity of her hyperglycemia is not consistent with new onset type 2 diabetes. At diagnosis, her c-peptide was inadequate suggesting insufficient insulin production rather than insulin resistance. Therefore, her hyperglycemia is more consistent with CPI-DM than type 2 diabetes. Atypically, she did not progress to fulminant beta cell failure, which could have been due to cessation of pembrolizumab (which is not unique to this case), initiation of liraglutide and metformin, or other unknown immunologic responses that inhibited full beta cell loss. This case raises the possibility of preventing fully insulin dependent CPI-DM if hyperglycemia is caught and treated early.


2020 ◽  
Vol 295 (17) ◽  
pp. 5685-5700
Author(s):  
Irina X. Zhang ◽  
Jianhua Ren ◽  
Suryakiran Vadrevu ◽  
Malini Raghavan ◽  
Leslie S. Satin

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.


2020 ◽  
Vol 48 (7) ◽  
pp. 030006052093786
Author(s):  
Li-hui Yan ◽  
Biao Mu ◽  
Da Pan ◽  
Ya-nan Shi ◽  
Ji-hong Yuan ◽  
...  

Aims Previous studies suggest that small intestinal bacterial overgrowth (SIBO) is associated with type 2 diabetes. However, few studies have evaluated the association between SIBO and beta-cell function in type 2 diabetes. The aim of this study was to evaluate whether beta-cell function was associated with SIBO. Materials and methods One hundred four patients with type 2 diabetes were included in this study. Based on the presence of SIBO, the patients were divided into SIBO-positive and SIBO-negative groups. Oral glucose tolerance tests were performed. Insulin sensitivity was measured using 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and the insulin sensitivity index (ISIM). Insulin release was calculated by HOMA-β, early-phase insulin secretion index InsAUC30/GluAUC30, and total-phase insulin secretion index InsAUC120/GluAUC120. Results Compared with the SIBO-negative group, patients in the SIBO-positive group showed a higher glucose level at 120 minutes, HbA1c, 1/HOMA-IR, and ISIM and a lower HOMA-β level, early-phase InsAUC30/GluAUC30, and total-phase InsAUC120/GluAUC120. Multiple linear regression analysis showed that body mass index, glucose at 0 minutes, and SIBO were independently associated with the early-phase and total-phase insulin secretion. Conclusion SIBO may be involved in lower levels of insulin release and worse glycemic control.


2015 ◽  
Vol 7 (5) ◽  
pp. 689-698 ◽  
Author(s):  
Meicen Zhou ◽  
Zengyi Li ◽  
Rui Min ◽  
Yaxiu Dong ◽  
Qi Sun ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1831-P
Author(s):  
YUKI MATSUHASHI ◽  
SHINJI CHIKAZAWA ◽  
HIROFUMI NAKAYAMA ◽  
MASAYA MURABAYASHI ◽  
SATORU MIZUSHIRI ◽  
...  

2021 ◽  
Author(s):  
Mara Suleiman ◽  
Xiaoyan Yi ◽  
Emanuele Bosi ◽  
Frederic Burdet ◽  
Carmela De Luca ◽  
...  

Abstract Remission of type 2 diabetes (T2D) may occur after very low-calorie diets or bariatric surgery, and is associated with improved pancreatic beta cell function. Here, we evaluated if T2D beta cell dysfunction can be rescued ex-vivo and which are the molecular mechanisms involved. Islets from 19 T2D donors were studied after isolation (“basal”) and following culture at 5.5 or 11.1 mmol/l glucose (“cultured”). We evaluated glucose-stimulated insulin secretion (GSIS) and transcriptomes by RNA sequencing, correlated insulin secretion changes (“cultured” vs “basal”) to global gene expression, and searched for potential therapeutic gene targets and compounds that mimic gene signatures of recovered beta cell function in T2D islets. GSIS improved in 12 out of 19 islet preparations from T2D donors after culture at 5.5 mmol/l glucose (insulin stimulation index increased from 1.4±0.1 to 2.3±0.2, p<0.01), mainly due to greater insulin response to high glucose. No improvement was seen in islets cultured at 11.1 mmol/l glucose. Functional improvement was accompanied by changes in expression of 438 genes, many of which involved in functional and inflammatory processes. Of them, 123 were significantly correlated with changes in glucose-stimulated insulin secretion. Drug repurposing and target identification analyses for beta cell functional recovery predicted several chemical (including Src inhibitors and anti-inflammatory drugs) and genetic hits in pathways such as chemokine, MAPK, ERBB signaling, and autophagy. In conclusion, defective insulin secretion in T2D can be rescued, at least in part, by a “non-diabetic” milieu, demonstrating important T2D beta cell functional plasticity. This recovery associates with specific transcriptomic traits, pointing to known as well as novel therapeutic targets to induce T2D remission.


2021 ◽  
Author(s):  
Clement Kufe ◽  
Lisa Micklesfield ◽  
maphoko Masemola ◽  
Tinashe Chikowore ◽  
Andre-Pascal Kengne ◽  
...  

Aims: Despite a higher prevalence of overweight and obesity in black South African women compared to men, the prevalence of type 2 diabetes does not differ. We explored if this could be due to sex differences in insulin sensitivity, clearance and or beta cell function, and also sex-specific associations with total and regional adiposity. Methods: This cross-sectional study included 804 black South African men (n=388) and women (n=416). Dual-energy x ray absorptiometry was used to measure total and regional adiposity. Insulin sensitivity (Matsuda index), secretion (C peptide index) and clearance (C peptide/insulin ratio) were estimated from an oral glucose tolerance test. Results: After adjusting for sex differences in fat mass index, men were less insulin sensitive and had lower beta cell function than women (p<0.001), with the strength of the associations with measures of total and central adiposity being greater in men than women (p<0.001 for interactions). Further, the association between total adiposity and type 2 diabetes risk was also greater in men than women (relative risk ratio (95% confidence interval): 2.05 (1.42 to 2.96), p<0.001 vs. 1.38 (1.03 to 1.85), p=0.031). Conclusion: With increasing adiposity, particularly increased centralisation of body fat linked to decreased insulin sensitivity and beta cell function, Black African men are at greater risk for type 2 diabetes than their female counterparts.


Sign in / Sign up

Export Citation Format

Share Document