scholarly journals Overexpression of GATA4 enhances the antiapoptotic effect of exosomes secreted from cardiac colony-forming unit fibroblasts via miRNA221-mediated targeting of the PTEN/PI3K/AKT signaling pathway

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunshu Hao ◽  
Zhengri Lu ◽  
Yuanyuan Zhao ◽  
Zhong Chen ◽  
Chengxing Shen ◽  
...  
2004 ◽  
Vol 287 (3) ◽  
pp. H1125-H1131 ◽  
Author(s):  
Yigang Wang ◽  
Nauman Ahmad ◽  
Mitsuhiro Kudo ◽  
Muhammad Ashraf

The opening of mitochondrial ATP-sensitive K+ (mitoKATP) channels has a significant role in delayed ischemic preconditioning, and nitric oxide (NO) is a well-known trigger for its activation. However, the source of NO remains unknown. Phosphorylation of endothelial NO synthase (eNOS) increases NO production and reduces apoptosis through the Akt signaling pathway. To elucidate the Akt signaling pathway involved in the opening and antiapoptotic effect of mitoKATP channel during delayed pharmacological preconditioning, the mitoKATP channel opener diazoxide (DE, 7 μg/kg ip) alone or DE plus Nω-nitro-l-arginine methyl ester (l-NAME, 30 μg/kg iv), an inhibitor of NOS, or wortmannin (WTN, 15 μg/kg iv), an inhibitor of phosphatidylinositol 3′-kinase (PI3 kinase), was administered to wild-type (WT) or eNOS−/− mice during DE treatment. Twenty-four hours later, hearts were isolated and subjected to 40 min ischemia and 30 min reperfusion (I/R). The effect of DE and other interventions on hemodynamic, terminal dUTP nick-end labeling staining and biochemical changes during I/R was assessed in mouse hearts. Treatment with DE resulted in a 2.2-fold increase in phosphorylation of Akt and a significant increase in eNOS and inducible NOS (iNOS) proteins. Akt is upstream of NOS and the mitoKATP channel as simultaneous pretreatment of WTN with DE abolished phosphorylation of Akt, which was not affected by l-NAME and 5-hydroxydecanoate. In hearts treated with DE, cardiac function was significantly improved after I/R, and apoptosis was also significantly decreased. WTN abolished the antiapoptotic effect of DE. Similarly, S-methylisothiourea, a specific iNOS inhibitor, when given to eNOS−/− mice that were pretreated with DE completely abolished the beneficial effects of DE on reduction of apoptotic death. DE was partially effective in eNOS−/− mice against the ischemic injury. It is concluded that DE activates Akt through the PI3 kinase signaling pathway and iNOS and eNOS is downstream of Akt.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4441-4441
Author(s):  
Laura Fisher

Retraction of ‘Salvianolic acid B inhibits inflammatory response and cell apoptosis via the PI3K/Akt signalling pathway in IL-1β-induced osteoarthritis chondrocytes’ by Bin Zhu et al., RSC Adv., 2018, 8, 36422–36429, DOI: 10.1039/C8RA02418A.


Life Sciences ◽  
2021 ◽  
Vol 268 ◽  
pp. 118996
Author(s):  
Jiangtao Yu ◽  
Xiaoli Hu ◽  
Xiuxiu Chen ◽  
Qiangyong Zhou ◽  
Qi Jiang ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xu Gao ◽  
Jingya Dai ◽  
Guifang Li ◽  
Xinya Dai

Abstract Objective In this work, we investigated the effects of gambogic acid (GA) on lipopolysaccharide (LPS)-induced apoptosis and inflammation in a cell model of neonatal pneumonia. Method Human WI-38 cells were maintained in vitro and incubated with various concentrations of GA to examine WI-38 survival. GA-preincubated WI-38 cells were then treated with LPS to investigate the protective effects of GA on LPS-induced death, apoptosis and inflammation. Western blot assay was utilized to analyze the effect of GA on tropomyosin receptor kinase A (TrkA) signaling pathway in LPS-treated WI-38 cells. In addition, human AKT serine/threonine kinase 1 (Akt) gene was knocked down in WI-38 cells to further investigate the associated genetic mechanisms of GA in protecting LPS-induced inflammation and apoptosis. Results Pre-incubating WI-38 cells with low and medium concentrations GA protected LPS-induced cell death, apoptosis and inflammatory protein productions of IL-6 and MCP-1. Using western blot assay, it was demonstrated that GA promoted TrkA phosphorylation and Akt activation in LPS-treated WI-38 cells. Knocking down Akt gene in WI-38 cells showed that GA-associated protections against LPS-induced apoptosis and inflammation were significantly reduced. Conclusions GA protected LPS-induced apoptosis and inflammation, possibly through the activations of TrkA and Akt signaling pathway. This work may broaden our understanding on the molecular mechanisms of human neonatal pneumonia.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Da Tang ◽  
Guang Fu ◽  
Wenbo Li ◽  
Ping Sun ◽  
Patricia A. Loughran ◽  
...  

Abstract Background Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. Methods WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. Results MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. Conclusions MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.


Sign in / Sign up

Export Citation Format

Share Document