scholarly journals The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kun-Che Chang ◽  
Pei-Feng Liu ◽  
Chia-Hsuan Chang ◽  
Ying-Cheng Lin ◽  
Yen-Ju Chen ◽  
...  

AbstractOxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.

2019 ◽  
Vol 24 (40) ◽  
pp. 4726-4741 ◽  
Author(s):  
Orathai Tangvarasittichai ◽  
Surapon Tangvarasittichai

Background: Oxidative stress is caused by free radicals or oxidant productions, including lipid peroxidation, protein modification, DNA damage and apoptosis or cell death and results in cellular degeneration and neurodegeneration from damage to macromolecules. Results: Accumulation of the DNA damage (8HOdG) products and the end products of LPO (including aldehyde, diene, triene conjugates and Schiff’s bases) were noted in the research studies. Significantly higher levels of these products in comparison with the controls were observed. Oxidative stress induced changes to ocular cells and tissues. Typical changes include ECM accumulation, cell dysfunction, cell death, advanced senescence, disarrangement or rearrangement of the cytoskeleton and released inflammatory cytokines. It is involved in ocular diseases, including keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, cataract, age-related macular degeneration, primary open-angle glaucoma, retinal light damage, and retinopathy of prematurity. These ocular diseases are the cause of irreversible blindness worldwide. Conclusions: Oxidative stress, inflammation and autophagy are implicated in biochemical and morphological changes in these ocular tissues. The development of therapy is a major target for the management care of these ocular diseases.


2018 ◽  
Vol 19 (7) ◽  
pp. 2118 ◽  
Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Maria Mazzone ◽  
Francesco Giuliano ◽  
Guido Basile ◽  
...  

The role of epigenetic alterations in the pathogenesis of retinal degenerative diseases, including age-related macular degeneration (AMD), has been pending so far. Our study investigated the effect of oxidative stress and inflammation on DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions, as well as on long interspersed nuclear element-1 (LINE-1) methylation, in human retinal pigment epithelial (ARPE-19) cells. Therefore, we evaluated whether treatment with resveratrol may modulate DNMT and SIRT1 functions and restore changes in LINE-1 methylation. Cells were treated with 25 mU/mL glucose oxidase (GOx) or 10 µg/mL lipopolysaccharide (LPS) to mimic oxidative or inflammatory conditions, respectively. Oxidative stress decreased DNMT1, DNMT3a, DNMT3b, and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−28.5%; p < 0.0001) and SIRT1 (−29.0%; p < 0.0001) activities. Similarly, inflammatory condition decreased DNMT1 and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−14.9%; p = 0.007) and SIRT1 (−20.1%; p < 0.002) activities. Interestingly, GOx- and LPS-treated cells exhibited lower LINE-1 methylation compared to controls (p-values < 0.001). We also demonstrated that treatment with 10 μM resveratrol for 24 h counteracted the detrimental effect on DNMT and SIRT1 functions, and LINE-1 methylation, in cells under oxidative and inflammatory conditions. However, further studies should explore the perspectives of resveratrol as a suitable strategy for the prevention and/or treatment of retinal degenerative diseases.


2020 ◽  
Vol 21 (3) ◽  
pp. 704 ◽  
Author(s):  
Dmitry V. Chistyakov ◽  
Viktoriia E. Baksheeva ◽  
Veronika V. Tiulina ◽  
Sergei V. Goriainov ◽  
Nadezhda V. Azbukina ◽  
...  

Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Shehzad Batliwala ◽  
Christy Xavier ◽  
Yang Liu ◽  
Hongli Wu ◽  
Iok-Hou Pang

The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 189
Author(s):  
José A. Fernández-Albarral ◽  
Esther de de Julián-López ◽  
Carmen Soler-Domínguez ◽  
Rosa de de Hoz ◽  
Inés López-Cuenca ◽  
...  

Autophagy is a catabolic process that ensures homeostasis in the cells of our organism. It plays a crucial role in protecting eye cells against oxidative damage and external stress factors. Ocular pathologies of high incidence, such as age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy are of multifactorial origin and are associated with genetic, environmental factors, age, and oxidative stress, among others; the latter factor is one of the most influential in ocular diseases, directly affecting the processes of autophagy activity. Alteration of the normal functioning of autophagy processes can interrupt organelle turnover, leading to the accumulation of cellular debris and causing physiological dysfunction of the eye. The aim of this study is to review research on the role of autophagy processes in the main ocular pathologies, which have a high incidence and result in high costs for the health system. Considering the role of autophagy processes in cell homeostasis and cell viability, the control and modulation of autophagy processes in ocular pathologies could constitute a new therapeutic approach.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1376
Author(s):  
Azza Dammak ◽  
Fernando Huete-Toral ◽  
Carlos Carpena-Torres ◽  
Alba Martin ◽  
Cristina Pastrana ◽  
...  

Most irreversible blindness observed with glaucoma and retina-related ocular diseases, including age-related macular degeneration and diabetic retinopathy, have their origin in the posterior segment of the eye, making their physiopathology both complex and interconnected. In addition to the age factor, these diseases share the same mechanism disorder based essentially on oxidative stress. In this context, the imbalance between the production of reactive oxygen species (ROS) mainly by mitochondria and their elimination by protective mechanisms leads to chronic inflammation. Oxidative stress and inflammation share a close pathophysiological process, appearing simultaneously and suggesting a relationship between both mechanisms. The biochemical end point of these two biological alarming systems is the release of different biomarkers that can be used in the diagnosis. Furthermore, oxidative stress, initiating in the vulnerable tissue of the posterior segment, is closely related to mitochondrial dysfunction, apoptosis, autophagy dysfunction, and inflammation, which are involved in each disease progression. In this review, we have analyzed (1) the oxidative stress and inflammatory processes in the back of the eye, (2) the importance of biomarkers, detected in systemic or ocular fluids, for the diagnosis of eye diseases based on recent studies, and (3) the treatment of posterior ocular diseases, based on long-term clinical studies.


Author(s):  
Mo Wang ◽  
Ling-ing Lau ◽  
Parameswaran G. Sreekumar ◽  
Christine Spee ◽  
Lin Liu ◽  
...  

Mitochondrial dysfunction and oxidative stress are thought to be relevant to the pathogenesis of age-related macular degeneration (AMD). Glutathione (GSH) homeostasis fulfills a number of important roles in mitochondria, such as maintenance of mitochondrial DNA and respiratory competency of cells. Although the transport of mitochondrial GSH (mGSH) is not fully understood, increasing evidence from non-ocular tissues suggests that OGC (2-oxoglutarate carrier, SLC25A11) and DIC (dicarboxylate carrier, SLC25A10) are involved in mGSH transport. However, whether OGC and DIC mediate the transfer of GSH into the mitochondria of retinal pigment epithelial cells (RPE) remains unknown. Thus, we investigated the expression, localization, and function of OGC and DIC in human RPE (hRPE) in relation to oxidative stress and GSH. Both OGC and DIC are expressed in hRPE and are localized in mitochondria. We also found a dose and time-dependent decrease of OGC and DIC expression under oxidative stress and increased expression in polarized RPE. Our data show that the downregulation of OGC and DIC resulted in increased apoptosis and mGSH depletion which can be overcome by co-treatment with GSH-MEE. These findings suggest that overexpression of OGC and DIC may be an effective strategy to decrease susceptibility to mitochondrial toxicants by elevation of mGSH.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Su Zhang ◽  
Hongwei Gu ◽  
Nan Hu

Peroxisome proliferator-activated receptorγ(PPARγ), a member of the nuclear receptor superfamily, is a ligand-activated transcription factor that plays an important role in the control of a variety of physiological processes. The last decade has witnessed an increasing interest for the role played by the agonists of PPARγin antiangiogenesis, antifibrosis, anti-inflammation effects and in controlling oxidative stress response in various organs. As the pathologic mechanisms of major blinding diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), keratitis, and optic neuropathy, often involve neoangiogenesis and inflammation- and oxidative stress-mediated cell death, evidences are accumulating on the potential benefits of PPARγto improve or prevent these vision threatening eye diseases. In this paper we describe what is known about the role of PPARγin the ocular pathophysiological processes and PPARγagonists as novel adjuvants in the treatment of eye diseases.


Sign in / Sign up

Export Citation Format

Share Document