scholarly journals A social trust and preference segmentation-based matrix factorization recommendation algorithm

Author(s):  
Wei Peng ◽  
Baogui Xin

AbstractA recommendation can inspire potential demands of users and make e-commerce platforms more intelligent and is essential for e-commerce enterprises’ sustainable development. The traditional social recommendation algorithm ignores the following fact: the preferences of users with trust relationships are not necessarily similar, and the consideration of user preference similarity should be limited to specific areas. To solve these problems mentioned above, we propose a social trust and preference segmentation-based matrix factorization (SPMF) recommendation algorithm. Experimental results based on the Ciao and Epinions datasets show that the accuracy of the SPMF algorithm is significantly superior to that of some state-of-the-art recommendation algorithms. The SPMF algorithm is a better recommendation algorithm based on distinguishing the difference of trust relations and preference domain, which can support commercial activities such as product marketing.

Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sheng Bin ◽  
Gengxin Sun

With the widespread use of social networks, social recommendation algorithms that add social relationships between users to recommender systems have been widely applied. Existing social recommendation algorithms only introduced one type of social relationship to the recommendation system, but in reality, there are often multiple social relationships among users. In this paper, a new matrix factorization recommendation algorithm combined with multiple social relationships is proposed. Through experiment results analysis on the Epinions dataset, the proposed matrix factorization recommendation algorithm has a significant improvement over the traditional and matrix factorization recommendation algorithms that integrate a single social relationship.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Jianrui Chen ◽  
Zhihui Wang ◽  
Tingting Zhu ◽  
Fernando E. Rosas

The purpose of recommendation systems is to help users find effective information quickly and conveniently and also to present the items that users are interested in. While the literature of recommendation algorithms is vast, most collaborative filtering recommendation approaches attain low recommendation accuracies and are also unable to track temporal changes of preferences. Additionally, previous differential clustering evolution processes relied on a single-layer network and used a single scalar quantity to characterise the status values of users and items. To address these limitations, this paper proposes an effective collaborative filtering recommendation algorithm based on a double-layer network. This algorithm is capable of fully exploring dynamical changes of user preference over time and integrates the user and item layers via an attention mechanism to build a double-layer network model. Experiments on Movielens, CiaoDVD, and Filmtrust datasets verify the effectiveness of our proposed algorithm. Experimental results show that our proposed algorithm can attain a better performance than other state-of-the-art algorithms.


2021 ◽  
Author(s):  
Zhisheng Yang ◽  
Jinyong Cheng

Abstract In recommendation algorithms, data sparsity and cold start problems are always inevitable. In order to solve such problems, researchers apply auxiliary information to recommendation algorithms to mine and obtain more potential information through users' historical records and then improve recommendation performance. This paper proposes a model ST_RippleNet, which combines knowledge graph with deep learning. In this model, users' potential interests are mined in the knowledge graph to stimulate the propagation of users' preferences on the set of knowledge entities. In the propagation of preferences, we adopt a triple-based multi-layer attention mechanism, and the distribution of users' preferences for candidate items formed by users' historical click information is used to predict the final click probability. In ST_RippleNet model, music data set is added to the original movie and book data set, and the improved loss function is applied to the model, which is optimized by RMSProp optimizer. Finally, tanh function is added to predict click probability to improve recommendation performance. Compared with the current mainstream recommendation methods, ST_RippleNet recommendation algorithm has very good performance in AUC and ACC, and has substantial improvement in movie, book and music recommendation.


2018 ◽  
Vol 50 ◽  
pp. 01134
Author(s):  
Anzhelika Polina ◽  
Elena Ovcharova

The article considers the problem of personal features formation among preschoolers with deprivation. The article presents the results of research aimed to reveal the peculiarities of the mental deprivation and trust deprivation among orphans, and to compare the results with the children raised in families. Many basic attitudes of the orphans are deformed, in particular, social trust relationships with the world, which are manifested in two forms of compensatory behavior. The first group comprises children with trust deprivation of passive type, characterized by anxiety, shyness, hypochondria, inability to stand up for themselves. The second group comprises children with trust deprivation of active type; these children are outwardly sociable, but they are prone to aggressive reactions, antisocial behavior and conflicts. Despite the difference in the behavior, orphans are characterized by common personal features: insecurity, inferiority, hostility, proneness to conflict, difficulties in communication.


2018 ◽  
Vol 7 (3) ◽  
pp. 1504 ◽  
Author(s):  
Dr Mohammed Ismail ◽  
Dr K. Bhanu Prakash ◽  
Dr M. Nagabhushana Rao

Social voting is becoming the new reason behind social recommendation these days. It helps in providing accurate recommendations with the help of factors like social trust etc. Here we propose Matrix factorization (MF) and nearest neighbor-based recommender systems accommodating the factors of user activities and also compared them with the peer reviewers, to provide a accurate recommendation. Through experiments we realized that the affiliation factors are very much needed for improving the accuracy of the recommender systems. This information helps us to overcome the cold start problem of the recommendation system and also y the analysis this information was much useful to cold users than to heavy users. In our experiments simple neighborhood model outperform the computerized matrix factorization models in the hot voting and non hot voting recommendation. We also proposed a hybrid recommender system producing a top-k recommendation inculcating different single approaches.  


2021 ◽  
Vol 1 (2) ◽  
pp. 1-9
Author(s):  
Wenjun Huang ◽  
Junyu Chen ◽  
Yue Ding

In the Internet age, how to dig out useful information from massive data has become a research hotspot. The emergence of recommendation algorithms effectively solves the problem of information overload, but traditional recommendation algorithms face problems such as data sparseness, cold start, and low accuracy. Later social recommendation algorithms usually only use a single social trust information for recommendation, and the integration of multiple trust relationships lacks an efficient model, which greatly affects the accuracy and reliability of recommendation. This paper proposes a trust-based approach. Recommended algorithm. First, use social trust data to calculate user trust relationships, including user local trust and user global trust. Further based on the scoring data, an implicit trust relationship is calculated, called rating trust, which includes scoring local trust and scoring global trust. Then set the recommendation weight, build the preference relationship between users through user trust and rating trust, and form a comprehensive trust relationship. The trust relationship of social networks is integrated into the probability matrix decomposition model to form an efficient and unified trusted recommendation model TR-PMF. This algorithm is compared with related algorithms on the Ciao and FilmTrust datasets, and the results prove that our method is competitive with other recommendation algorithms.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 500
Author(s):  
François Fouss ◽  
Elora Fernandes

Providing fair and convenient comparisons between recommendation algorithms—where algorithms could focus on a traditional dimension (accuracy) and/or less traditional ones (e.g., novelty, diversity, serendipity, etc.)—is a key challenge in the recent developments of recommender systems. This paper focuses on novelty and presents a new, closer-to-reality model for evaluating the quality of a recommendation algorithm by reducing the popularity bias inherent in traditional training/test set evaluation frameworks, which are biased by the dominance of popular items and their inherent features. In the suggested model, each interaction has a probability of being included in the test set that randomly depends on a specific feature related to the focused dimension (novelty in this work). The goal of this paper is to reconcile, in terms of evaluation (and therefore comparison), the accuracy and novelty dimensions of recommendation algorithms, leading to a more realistic comparison of their performance. The results obtained from two well-known datasets show the evolution of the behavior of state-of-the-art ranking algorithms when novelty is progressively, and fairly, given more importance in the evaluation procedure, and could lead to potential changes in the decision processes of organizations involving recommender systems.


Author(s):  
Jun Wang ◽  
Qiang Tang ◽  
Afonso Arriaga ◽  
Peter Y. A. Ryan

Nowadays, recommender system is an indispensable tool in many information services, and a large number of algorithms have been designed and implemented. However, fed with very large datasets, state-of-the-art recommendation algorithms often face an efficiency bottleneck, i.e., it takes huge amount of computing resources to train a recommendation model. In order to satisfy the needs of privacy-savvy users who do not want to disclose their information to the service provider, the complexity of most existing solutions becomes prohibitive. As such, it is an interesting research question to design simple and efficient recommendation algorithms that achieve reasonable accuracy and facilitate privacy protection at the same time. In this paper, we propose an efficient recommendation algorithm, named CryptoRec, which has two nice properties: (1) can estimate a new user's preferences by directly using a model pre-learned from an expert dataset, and the new user's data is not required to train the model; (2) can compute recommendations with only addition and multiplication operations. As to the evaluation, we first test the recommendation accuracy on three real-world datasets and show that CryptoRec is competitive with state-of-the-art recommenders. Then, we evaluate the performance of the privacy-preserving variants of CryptoRec and show that predictions can be computed in seconds on a PC. In contrast, existing solutions will need tens or hundreds of hours on more powerful computers.


Sign in / Sign up

Export Citation Format

Share Document